Suppr超能文献

肿瘤进展中的瓦伯格效应:线粒体氧化代谢作为一种抗转移机制。

The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.

作者信息

Lu Jianrong, Tan Ming, Cai Qingsong

机构信息

Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL 32610, United States.

Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States.

出版信息

Cancer Lett. 2015 Jan 28;356(2 Pt A):156-64. doi: 10.1016/j.canlet.2014.04.001. Epub 2014 Apr 13.

Abstract

Compared to normal cells, cancer cells strongly upregulate glucose uptake and glycolysis to give rise to increased yield of intermediate glycolytic metabolites and the end product pyruvate. Moreover, glycolysis is uncoupled from the mitochondrial tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in cancer cells. Consequently, the majority of glycolysis-derived pyruvate is diverted to lactate fermentation and kept away from mitochondrial oxidative metabolism. This metabolic phenotype is known as the Warburg effect. While it has become widely accepted that the glycolytic intermediates provide essential anabolic support for cell proliferation and tumor growth, it remains largely elusive whether and how the Warburg metabolic phenotype may play a role in tumor progression. We hereby review the cause and consequence of the restrained oxidative metabolism, in particular in the context of tumor metastasis. Cells change or lose their extracellular matrix during the metastatic process. Inadequate/inappropriate matrix attachment generates reactive oxygen species (ROS) and causes a specific type of cell death, termed anoikis, in normal cells. Although anoikis is a barrier to metastasis, cancer cells have often acquired elevated threshold for anoikis and hence heightened metastatic potential. As ROS are inherent byproducts of oxidative metabolism, forced stimulation of glucose oxidation in cancer cells raises oxidative stress and restores cells' sensitivity to anoikis. Therefore, by limiting the pyruvate flux into mitochondrial oxidative metabolism, the Warburg effect enables cancer cells to avoid excess ROS generation from mitochondrial respiration and thus gain increased anoikis resistance and survival advantage for metastasis. Consistent with this notion, pro-metastatic transcription factors HIF and Snail attenuate oxidative metabolism, whereas tumor suppressor p53 and metastasis suppressor KISS1 promote mitochondrial oxidation. Collectively, these findings reveal mitochondrial oxidative metabolism as a critical suppressor of metastasis and justify metabolic therapies for potential prevention/intervention of tumor metastasis.

摘要

与正常细胞相比,癌细胞强烈上调葡萄糖摄取和糖酵解,以增加糖酵解中间代谢产物和终产物丙酮酸的产量。此外,癌细胞中的糖酵解与线粒体三羧酸(TCA)循环和氧化磷酸化(OXPHOS)解偶联。因此,大部分糖酵解衍生的丙酮酸被转移到乳酸发酵,远离线粒体氧化代谢。这种代谢表型被称为瓦伯格效应。虽然糖酵解中间产物为细胞增殖和肿瘤生长提供重要的合成代谢支持已被广泛接受,但瓦伯格代谢表型是否以及如何在肿瘤进展中发挥作用在很大程度上仍不清楚。我们在此回顾了氧化代谢受限的原因和后果,特别是在肿瘤转移的背景下。在转移过程中,细胞会改变或失去其细胞外基质。正常细胞中,不适当的基质附着会产生活性氧(ROS)并导致一种特定类型的细胞死亡,称为失巢凋亡。虽然失巢凋亡是转移的一个障碍,但癌细胞通常获得了更高的失巢凋亡阈值,因此具有更高的转移潜能。由于ROS是氧化代谢的固有副产物,强制刺激癌细胞中的葡萄糖氧化会增加氧化应激并恢复细胞对失巢凋亡的敏感性。因此,通过限制丙酮酸进入线粒体氧化代谢的通量,瓦伯格效应使癌细胞能够避免线粒体呼吸产生过多的ROS,从而获得更高的失巢凋亡抗性和转移生存优势。与此观点一致的是,促转移转录因子HIF和Snail会减弱氧化代谢,而肿瘤抑制因子p53和转移抑制因子KISS1则促进线粒体氧化。总的来说,这些发现揭示了线粒体氧化代谢是转移的关键抑制因子,并为潜在预防/干预肿瘤转移的代谢疗法提供了依据。

相似文献

1
The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.
Cancer Lett. 2015 Jan 28;356(2 Pt A):156-64. doi: 10.1016/j.canlet.2014.04.001. Epub 2014 Apr 13.
2
Glucose oxidation modulates anoikis and tumor metastasis.
Mol Cell Biol. 2012 May;32(10):1893-907. doi: 10.1128/MCB.06248-11. Epub 2012 Mar 19.
3
The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
Int J Radiat Biol. 2019 Jul;95(7):912-919. doi: 10.1080/09553002.2019.1589653. Epub 2019 Mar 22.
4
Metastasis suppressor KISS1 seems to reverse the Warburg effect by enhancing mitochondrial biogenesis.
Cancer Res. 2014 Feb 1;74(3):954-63. doi: 10.1158/0008-5472.CAN-13-1183. Epub 2013 Dec 18.
5
Pyruvate uptake is increased in highly invasive ovarian cancer cells under anoikis conditions for anaplerosis, mitochondrial function, and migration.
Am J Physiol Endocrinol Metab. 2012 Oct 15;303(8):E1036-52. doi: 10.1152/ajpendo.00151.2012. Epub 2012 Aug 14.
6
Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
Semin Oncol. 2014 Apr;41(2):195-216. doi: 10.1053/j.seminoncol.2014.03.002. Epub 2014 Mar 5.
7
The Role of Mitochondrial Fat Oxidation in Cancer Cell Proliferation and Survival.
Cells. 2020 Dec 4;9(12):2600. doi: 10.3390/cells9122600.
8
Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells.
Tumour Biol. 2016 May;37(5):6661-71. doi: 10.1007/s13277-015-4479-7. Epub 2015 Dec 8.
9
Revisiting the Warburg effect: historical dogma versus current understanding.
J Physiol. 2021 Mar;599(6):1745-1757. doi: 10.1113/JP278810. Epub 2021 Jan 4.
10
Mitochondria in cancer: at the crossroads of life and death.
Chin J Cancer. 2011 Aug;30(8):526-39. doi: 10.5732/cjc.011.10018.

引用本文的文献

3
5
10
Harnessing the interaction between redox signaling and senescence to restrain tumor drug resistance.
Front Cell Dev Biol. 2025 Jul 9;13:1639772. doi: 10.3389/fcell.2025.1639772. eCollection 2025.

本文引用的文献

2
Antioxidants accelerate lung cancer progression in mice.
Sci Transl Med. 2014 Jan 29;6(221):221ra15. doi: 10.1126/scitranslmed.3007653.
3
Metastasis suppressor KISS1 seems to reverse the Warburg effect by enhancing mitochondrial biogenesis.
Cancer Res. 2014 Feb 1;74(3):954-63. doi: 10.1158/0008-5472.CAN-13-1183. Epub 2013 Dec 18.
4
Kisspeptin/KISS1R System in Breast Cancer.
J Cancer. 2013 Sep 26;4(8):653-61. doi: 10.7150/jca.7626.
5
HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations.
J Clin Invest. 2013 Sep;123(9):3664-71. doi: 10.1172/JCI67230. Epub 2013 Sep 3.
6
Metabolic regulation by p53 family members.
Cell Metab. 2013 Nov 5;18(5):617-33. doi: 10.1016/j.cmet.2013.06.019. Epub 2013 Aug 15.
7
Stalling the engine of resistance: targeting cancer metabolism to overcome therapeutic resistance.
Cancer Res. 2013 May 1;73(9):2709-17. doi: 10.1158/0008-5472.CAN-12-3009. Epub 2013 Apr 22.
8
9
Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer.
Cancer Cell. 2013 Mar 18;23(3):316-31. doi: 10.1016/j.ccr.2013.01.022. Epub 2013 Feb 28.
10
Manganese superoxide dismutase promotes anoikis resistance and tumor metastasis.
Cell Death Dis. 2013 Feb 21;4(2):e504. doi: 10.1038/cddis.2013.20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验