From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and.
the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205.
J Biol Chem. 2014 May 30;289(22):15810-9. doi: 10.1074/jbc.M114.572081. Epub 2014 Apr 21.
Thymine DNA glycosylase (TDG) initiates the repair of G·T mismatches that arise by deamination of 5-methylcytosine (mC), and it excises 5-formylcytosine and 5-carboxylcytosine, oxidized forms of mC. TDG functions in active DNA demethylation and is essential for embryonic development. TDG forms a tight enzyme-product complex with abasic DNA, which severely impedes enzymatic turnover. Modification of TDG by small ubiquitin-like modifier (SUMO) proteins weakens its binding to abasic DNA. It was proposed that sumoylation of product-bound TDG regulates product release, with SUMO conjugation and deconjugation needed for each catalytic cycle, but this model remains unsubstantiated. We examined the efficiency and specificity of TDG sumoylation using in vitro assays with purified E1 and E2 enzymes, finding that TDG is modified efficiently by SUMO-1 and SUMO-2. Remarkably, we observed similar modification rates for free TDG and TDG bound to abasic or undamaged DNA. To examine the conjugation step directly, we determined modification rates (kobs) using preformed E2∼SUMO-1 thioester. The hyperbolic dependence of kobs on TDG concentration gives kmax = 1.6 min(-1) and K1/2 = 0.55 μM, suggesting that E2∼SUMO-1 has higher affinity for TDG than for the SUMO targets RanGAP1 and p53 (peptide). Whereas sumoylation substantially weakens TDG binding to DNA, TDG∼SUMO-1 still binds relatively tightly to AP-DNA (Kd ∼50 nM). Although E2∼SUMO-1 exhibits no specificity for product-bound TDG, the relatively high conjugation efficiency raises the possibility that E2-mediated sumoylation could stimulate product release in vivo. This and other implications for the biological role and mechanism of TDG sumoylation are discussed.
胸腺嘧啶 DNA 糖基化酶 (TDG) 启动了由 5-甲基胞嘧啶 (mC) 脱氨产生的 G·T 错配的修复,并切除 5-甲酰胞嘧啶和 5-羧基胞嘧啶,这是 mC 的氧化形式。TDG 在主动 DNA 去甲基化中发挥作用,对胚胎发育至关重要。TDG 与无碱基 DNA 形成紧密的酶-产物复合物,严重阻碍酶的周转。小泛素样修饰物 (SUMO) 蛋白对 TDG 的修饰削弱了其与无碱基 DNA 的结合。有人提出,产物结合的 TDG 的 SUMO 化调节产物释放,每个催化循环都需要 SUMO 缀合和去缀合,但该模型尚未得到证实。我们使用纯化的 E1 和 E2 酶进行体外测定,研究了 TDG 的 SUMO 化效率和特异性,发现 TDG 可被 SUMO-1 和 SUMO-2 有效修饰。值得注意的是,我们观察到无碱基或未受损 DNA 结合的游离 TDG 和 TDG 的修饰速率相似。为了直接检查缀合步骤,我们使用预形成的 E2∼SUMO-1 硫酯确定修饰速率 (kobs)。kobs 对 TDG 浓度的双曲线依赖性给出 kmax = 1.6 min(-1)和 K1/2 = 0.55 μM,表明 E2∼SUMO-1 对 TDG 的亲和力高于 SUMO 靶标 RanGAP1 和 p53(肽)。虽然 SUMO 化大大削弱了 TDG 与 DNA 的结合,但 TDG∼SUMO-1 仍能与 AP-DNA 结合相对紧密(Kd ∼50 nM)。虽然 E2∼SUMO-1 对产物结合的 TDG 没有特异性,但相对较高的缀合效率增加了 E2 介导的 SUMO 化在体内刺激产物释放的可能性。讨论了这一点及其对 TDG SUMO 化的生物学作用和机制的其他影响。