Suppr超能文献

定量绝对蛋白质合成率揭示了细胞资源分配的基本原理。

Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources.

机构信息

Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute of Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA.

California Institute of Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.

出版信息

Cell. 2014 Apr 24;157(3):624-35. doi: 10.1016/j.cell.2014.02.033.

Abstract

Quantitative views of cellular functions require precise measures of rates of biomolecule production, especially proteins-the direct effectors of biological processes. Here, we present a genome-wide approach, based on ribosome profiling, for measuring absolute protein synthesis rates. The resultant E. coli data set transforms our understanding of the extent to which protein synthesis is precisely controlled to optimize function and efficiency. Members of multiprotein complexes are made in precise proportion to their stoichiometry, whereas components of functional modules are produced differentially according to their hierarchical role. Estimates of absolute protein abundance also reveal principles for optimizing design. These include how the level of different types of transcription factors is optimized for rapid response and how a metabolic pathway (methionine biosynthesis) balances production cost with activity requirements. Our studies reveal how general principles, important both for understanding natural systems and for synthesizing new ones, emerge from quantitative analyses of protein synthesis.

摘要

细胞功能的定量观点需要精确测量生物分子(尤其是蛋白质)的产生速率,因为蛋白质是生物过程的直接效应物。在这里,我们提出了一种基于核糖体谱分析的全基因组方法来测量绝对蛋白质合成速率。由此产生的大肠杆菌数据集改变了我们对蛋白质合成受到精确控制以优化功能和效率的程度的理解。多蛋白复合物的成员按其化学计量比精确制造,而功能模块的组件则根据其层次角色差异产生。绝对蛋白质丰度的估计还揭示了优化设计的原则。这些原则包括不同类型转录因子的水平如何针对快速响应进行优化,以及代谢途径(甲硫氨酸生物合成)如何平衡生产成本与活性要求。我们的研究揭示了如何从蛋白质合成的定量分析中得出对理解自然系统和合成新系统都很重要的一般原则。

相似文献

2
Production of Protein-Complex Components Is Stoichiometric and Lacks General Feedback Regulation in Eukaryotes.
Cell Syst. 2018 Dec 26;7(6):580-589.e4. doi: 10.1016/j.cels.2018.11.003. Epub 2018 Dec 12.
5
High-Throughput Optimization Cycle of a Cell-Free Ribosome Assembly and Protein Synthesis System.
ACS Synth Biol. 2018 Dec 21;7(12):2841-2853. doi: 10.1021/acssynbio.8b00276. Epub 2018 Nov 19.
6
Selected reaction monitoring for the quantification of Escherichia coli ribosomal proteins.
PLoS One. 2020 Dec 14;15(12):e0236850. doi: 10.1371/journal.pone.0236850. eCollection 2020.
7
Identification of protein complexes and functional modules in E. coli PPI networks.
BMC Microbiol. 2020 Aug 6;20(1):243. doi: 10.1186/s12866-020-01904-6.
8
Drugs as metabolic probes for protein synthesis.
Adv Cytopharmacol. 1971 May;1:113-8.
9
A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing.
Nature. 2008 Mar 6;452(7183):108-11. doi: 10.1038/nature06683. Epub 2008 Feb 20.

引用本文的文献

6
An empirical model of aminoacylation kinetics for E. coli class I and II aminoacyl tRNA synthetases.
PLoS Comput Biol. 2025 Aug 12;21(8):e1013353. doi: 10.1371/journal.pcbi.1013353. eCollection 2025 Aug.
9
Robust and resource-optimal dynamic pattern formation of Min proteins in vivo.
Nat Phys. 2025;21(7):1160-1169. doi: 10.1038/s41567-025-02878-w. Epub 2025 May 5.
10
OmpA Specifically Modulates the Activity of Enzymes that Reside in the Crowded Bacterial Outer Membrane.
J Mol Biol. 2025 Jul 14;437(19):169346. doi: 10.1016/j.jmb.2025.169346.

本文引用的文献

1
PortEco: a resource for exploring bacterial biology through high-throughput data and analysis tools.
Nucleic Acids Res. 2014 Jan;42(Database issue):D677-84. doi: 10.1093/nar/gkt1203. Epub 2013 Nov 26.
2
Differential translation tunes uneven production of operon-encoded proteins.
Cell Rep. 2013 Sep 12;4(5):938-44. doi: 10.1016/j.celrep.2013.07.049. Epub 2013 Sep 5.
3
Coordination of bacterial proteome with metabolism by cyclic AMP signalling.
Nature. 2013 Aug 15;500(7462):301-6. doi: 10.1038/nature12446. Epub 2013 Aug 7.
4
Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway.
Mol Cell. 2013 May 23;50(4):540-51. doi: 10.1016/j.molcel.2013.03.018. Epub 2013 Apr 18.
5
Conformation-specific labeling of BamA and suppressor analysis suggest a cyclic mechanism for β-barrel assembly in Escherichia coli.
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5151-6. doi: 10.1073/pnas.1302662110. Epub 2013 Mar 11.
6
Aneuploidy causes proteotoxic stress in yeast.
Genes Dev. 2012 Dec 15;26(24):2696-708. doi: 10.1101/gad.207407.112. Epub 2012 Dec 7.
7
Decoding human cytomegalovirus.
Science. 2012 Nov 23;338(6110):1088-93. doi: 10.1126/science.1227919.
9
Bacterial persistence and toxin-antitoxin loci.
Annu Rev Microbiol. 2012;66:103-23. doi: 10.1146/annurev-micro-092611-150159.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验