Suppr超能文献

统计距离作为衰老过程中生理失调指标的跨人群验证

Cross-population validation of statistical distance as a measure of physiological dysregulation during aging.

作者信息

Cohen Alan A, Milot Emmanuel, Li Qing, Legault Véronique, Fried Linda P, Ferrucci Luigi

机构信息

Groupe de recherche PRIMUS, Dept. of Family Medicine, University of Sherbrooke, CHUS-Fleurimont, 3001 12(e) Ave N., Sherbrooke, QC J1H 5N4, Canada.

Groupe de recherche PRIMUS, Dept. of Family Medicine, University of Sherbrooke, CHUS-Fleurimont, 3001 12(e) Ave N., Sherbrooke, QC J1H 5N4, Canada.

出版信息

Exp Gerontol. 2014 Sep;57:203-10. doi: 10.1016/j.exger.2014.04.016. Epub 2014 May 5.

Abstract

Measuring physiological dysregulation during aging could be a key tool both to understand underlying aging mechanisms and to predict clinical outcomes in patients. However, most existing indices are either circular or hard to interpret biologically. Recently, we showed that statistical distance of 14 common blood biomarkers (a measure of how strange an individual's biomarker profile is) was associated with age and mortality in the WHAS II data set, validating its use as a measure of physiological dysregulation. Here, we extend the analyses to other data sets (WHAS I and InCHIANTI) to assess the stability of the measure across populations. We found that the statistical criteria used to determine the original 14 biomarkers produced diverging results across populations; in other words, had we started with a different data set, we would have chosen a different set of markers. Nonetheless, the same 14 markers (or the subset of 12 available for InCHIANTI) produced highly similar predictions of age and mortality. We include analyses of all combinatorial subsets of the markers and show that results do not depend much on biomarker choice or data set, but that more markers produce a stronger signal. We conclude that statistical distance as a measure of physiological dysregulation is stable across populations in Europe and North America.

摘要

测量衰老过程中的生理失调可能是理解潜在衰老机制和预测患者临床结果的关键工具。然而,大多数现有指标要么存在循环性,要么在生物学上难以解释。最近,我们在WHAS II数据集中发现,14种常见血液生物标志物的统计距离(衡量个体生物标志物谱有多异常的指标)与年龄和死亡率相关,验证了其作为生理失调指标的用途。在此,我们将分析扩展到其他数据集(WHAS I和InCHIANTI),以评估该指标在不同人群中的稳定性。我们发现,用于确定最初14种生物标志物的统计标准在不同人群中产生了不同的结果;换句话说,如果我们从不同的数据集开始,就会选择不同的一组标志物。尽管如此,相同的14种标志物(或InCHIANTI可用的12种标志物子集)对年龄和死亡率的预测高度相似。我们对标志物的所有组合子集进行了分析,并表明结果在很大程度上不依赖于生物标志物的选择或数据集,但更多的标志物会产生更强的信号。我们得出结论,作为生理失调指标的统计距离在欧洲和北美的不同人群中是稳定的。

相似文献

1
Cross-population validation of statistical distance as a measure of physiological dysregulation during aging.
Exp Gerontol. 2014 Sep;57:203-10. doi: 10.1016/j.exger.2014.04.016. Epub 2014 May 5.
2
Statistical distance as a measure of physiological dysregulation is largely robust to variation in its biomarker composition.
PLoS One. 2015 Apr 13;10(4):e0122541. doi: 10.1371/journal.pone.0122541. eCollection 2015.
3
A Random Forest-Induced Distance-Based Measure of Physiologic al Dysregulation.
Curr Aging Sci. 2017;10(4):270-281. doi: 10.2174/1874609810666170117155756.
4
A novel statistical approach shows evidence for multi-system physiological dysregulation during aging.
Mech Ageing Dev. 2013 Mar;134(3-4):110-7. doi: 10.1016/j.mad.2013.01.004. Epub 2013 Jan 31.
5
An objective metric of individual health and aging for population surveys.
Popul Health Metr. 2022 Mar 31;20(1):11. doi: 10.1186/s12963-022-00289-0.
6
Derivation of a measure of physiological multisystem dysregulation: Results from WHAS and health ABC.
Mech Ageing Dev. 2020 Jun;188:111258. doi: 10.1016/j.mad.2020.111258. Epub 2020 May 11.
7
Trajectories of physiological dysregulation predicts mortality and health outcomes in a consistent manner across three populations.
Mech Ageing Dev. 2014 Nov-Dec;141-142:56-63. doi: 10.1016/j.mad.2014.10.001. Epub 2014 Oct 20.
8
Physiological Dysregulation Proceeds and Predicts Health Outcomes Similarly in Chinese and Western Populations.
J Gerontol A Biol Sci Med Sci. 2024 Jan 1;79(1). doi: 10.1093/gerona/glad146.
10
Conservation of physiological dysregulation signatures of aging across primates.
Aging Cell. 2019 Apr;18(2):e12925. doi: 10.1111/acel.12925. Epub 2019 Feb 11.

引用本文的文献

2
Whole-body networks: a holistic approach for studying aging.
Geroscience. 2025 Jan 29. doi: 10.1007/s11357-025-01540-w.
3
Age-related physiological dysregulation progresses slowly in semi-free-ranging chimpanzees.
Evol Med Public Health. 2024 Jun 19;12(1):129-142. doi: 10.1093/emph/eoae010. eCollection 2024.
4
Interactions between genes involved in physiological dysregulation and axon guidance: role in Alzheimer's disease.
Front Genet. 2023 Aug 31;14:1236509. doi: 10.3389/fgene.2023.1236509. eCollection 2023.
5
Physiological Dysregulation Proceeds and Predicts Health Outcomes Similarly in Chinese and Western Populations.
J Gerontol A Biol Sci Med Sci. 2024 Jan 1;79(1). doi: 10.1093/gerona/glad146.
6
Explainable machine learning framework to predict personalized physiological aging.
Aging Cell. 2023 Aug;22(8):e13872. doi: 10.1111/acel.13872. Epub 2023 Jun 10.
7
Architectural Allostatic Overloading: Exploring a Connection between Architectural Form and Allostatic Overloading.
Int J Environ Res Public Health. 2023 Apr 25;20(9):5637. doi: 10.3390/ijerph20095637.
9
Multidimensional associations between nutrient intake and healthy ageing in humans.
BMC Biol. 2022 Sep 1;20(1):196. doi: 10.1186/s12915-022-01395-z.
10
An objective metric of individual health and aging for population surveys.
Popul Health Metr. 2022 Mar 31;20(1):11. doi: 10.1186/s12963-022-00289-0.

本文引用的文献

1
Frailty in elderly people.
Lancet. 2013 Mar 2;381(9868):752-62. doi: 10.1016/S0140-6736(12)62167-9. Epub 2013 Feb 8.
2
A novel statistical approach shows evidence for multi-system physiological dysregulation during aging.
Mech Ageing Dev. 2013 Mar;134(3-4):110-7. doi: 10.1016/j.mad.2013.01.004. Epub 2013 Jan 31.
3
Physiological regulatory networks: ecological roles and evolutionary constraints.
Trends Ecol Evol. 2012 Aug;27(8):428-35. doi: 10.1016/j.tree.2012.04.008. Epub 2012 May 19.
4
Allostatic load and frailty in older adults.
J Am Geriatr Soc. 2009 Sep;57(9):1525-31. doi: 10.1111/j.1532-5415.2009.02389.x. Epub 2009 Jul 21.
5
Stochastic model for analysis of longitudinal data on aging and mortality.
Math Biosci. 2007 Aug;208(2):538-51. doi: 10.1016/j.mbs.2006.11.006. Epub 2006 Dec 5.
7
A global clinical measure of fitness and frailty in elderly people.
CMAJ. 2005 Aug 30;173(5):489-95. doi: 10.1503/cmaj.050051.
8
From bedside to bench: research agenda for frailty.
Sci Aging Knowledge Environ. 2005 Aug 3;2005(31):pe24. doi: 10.1126/sageke.2005.31.pe24.
9
A comparative analysis of measurement approaches for physiological dysregulation in an older population.
Exp Gerontol. 2005 May;40(5):438-49. doi: 10.1016/j.exger.2005.03.002. Epub 2005 Apr 26.
10
Age differences in allostatic load: an index of physiological dysregulation.
Exp Gerontol. 2003 Jul;38(7):731-4. doi: 10.1016/s0531-5565(03)00099-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验