Cohen Alan A, Milot Emmanuel, Li Qing, Legault Véronique, Fried Linda P, Ferrucci Luigi
Groupe de recherche PRIMUS, Dept. of Family Medicine, University of Sherbrooke, CHUS-Fleurimont, 3001 12(e) Ave N., Sherbrooke, QC J1H 5N4, Canada.
Groupe de recherche PRIMUS, Dept. of Family Medicine, University of Sherbrooke, CHUS-Fleurimont, 3001 12(e) Ave N., Sherbrooke, QC J1H 5N4, Canada.
Exp Gerontol. 2014 Sep;57:203-10. doi: 10.1016/j.exger.2014.04.016. Epub 2014 May 5.
Measuring physiological dysregulation during aging could be a key tool both to understand underlying aging mechanisms and to predict clinical outcomes in patients. However, most existing indices are either circular or hard to interpret biologically. Recently, we showed that statistical distance of 14 common blood biomarkers (a measure of how strange an individual's biomarker profile is) was associated with age and mortality in the WHAS II data set, validating its use as a measure of physiological dysregulation. Here, we extend the analyses to other data sets (WHAS I and InCHIANTI) to assess the stability of the measure across populations. We found that the statistical criteria used to determine the original 14 biomarkers produced diverging results across populations; in other words, had we started with a different data set, we would have chosen a different set of markers. Nonetheless, the same 14 markers (or the subset of 12 available for InCHIANTI) produced highly similar predictions of age and mortality. We include analyses of all combinatorial subsets of the markers and show that results do not depend much on biomarker choice or data set, but that more markers produce a stronger signal. We conclude that statistical distance as a measure of physiological dysregulation is stable across populations in Europe and North America.
测量衰老过程中的生理失调可能是理解潜在衰老机制和预测患者临床结果的关键工具。然而,大多数现有指标要么存在循环性,要么在生物学上难以解释。最近,我们在WHAS II数据集中发现,14种常见血液生物标志物的统计距离(衡量个体生物标志物谱有多异常的指标)与年龄和死亡率相关,验证了其作为生理失调指标的用途。在此,我们将分析扩展到其他数据集(WHAS I和InCHIANTI),以评估该指标在不同人群中的稳定性。我们发现,用于确定最初14种生物标志物的统计标准在不同人群中产生了不同的结果;换句话说,如果我们从不同的数据集开始,就会选择不同的一组标志物。尽管如此,相同的14种标志物(或InCHIANTI可用的12种标志物子集)对年龄和死亡率的预测高度相似。我们对标志物的所有组合子集进行了分析,并表明结果在很大程度上不依赖于生物标志物的选择或数据集,但更多的标志物会产生更强的信号。我们得出结论,作为生理失调指标的统计距离在欧洲和北美的不同人群中是稳定的。