Suppr超能文献

利用生物发光共振能量转移技术研究活细胞中的蛋白质-蛋白质相互作用。

Investigating protein-protein interactions in live cells using bioluminescence resonance energy transfer.

作者信息

Deriziotis Pelagia, Graham Sarah A, Estruch Sara B, Fisher Simon E

机构信息

Language and Genetics Department, Max Planck Institute for Psycholinguistics.

Language and Genetics Department, Max Planck Institute for Psycholinguistics; Donders Institute for Brain, Cognition and Behaviour;

出版信息

J Vis Exp. 2014 May 26(87):51438. doi: 10.3791/51438.

Abstract

Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.

摘要

基于生物发光共振能量转移(BRET)的检测方法为监测活细胞中的蛋白质-蛋白质相互作用提供了一种灵敏且可靠的手段。BRET是能量从“供体”荧光素酶向“受体”荧光蛋白的非辐射转移。在该检测方法最常见的配置中,供体是海肾荧光素酶,受体是黄色荧光蛋白(YFP)。由于能量转移效率强烈依赖于距离,BRET现象的观察要求供体和受体紧密相邻。为了检测培养的哺乳动物细胞中两种感兴趣蛋白质之间的相互作用,一种蛋白质表达为与荧光素酶的融合蛋白,另一种表达为与YFP的融合蛋白。两种感兴趣蛋白质之间的相互作用可能使供体和受体足够接近,从而发生能量转移。与其他研究蛋白质-蛋白质相互作用的技术相比,BRET检测灵敏,所需的实际操作时间和试剂很少,并且能够检测弱的、短暂的或依赖于活细胞内生化环境的相互作用。因此,它是一种理想的方法,用于确认酵母双杂交或质谱蛋白质组学研究提出的假定相互作用,此外,它还非常适合绘制相互作用区域、评估翻译后修饰对蛋白质-蛋白质相互作用的影响以及评估患者DNA中鉴定出的突变的影响。

相似文献

2
Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living cells.
Nat Protoc. 2019 Apr;14(4):1084-1107. doi: 10.1038/s41596-019-0129-7. Epub 2019 Mar 25.
4
Use of BRET to Study Protein-Protein Interactions In Vitro and In Vivo.
Methods Mol Biol. 2016;1443:57-78. doi: 10.1007/978-1-4939-3724-0_5.
5
In vivo detection of protein-protein interaction in plant cells using BRET.
Methods Mol Biol. 2004;284:271-86. doi: 10.1385/1-59259-816-1:271.
6
Buffer enhanced bioluminescence resonance energy transfer sensor based on Gaussia luciferase for in vitro detection of protease.
Anal Chim Acta. 2012 Apr 29;724:104-10. doi: 10.1016/j.aca.2012.02.047. Epub 2012 Mar 7.

引用本文的文献

1
Compensation between FOXP transcription factors maintains proper striatal function.
Cell Rep. 2024 May 28;43(5):114257. doi: 10.1016/j.celrep.2024.114257. Epub 2024 May 17.
2
Compensation between FOXP transcription factors maintains proper striatal function.
bioRxiv. 2023 Jun 26:2023.06.26.546567. doi: 10.1101/2023.06.26.546567.
4
Transfection types, methods and strategies: a technical review.
PeerJ. 2021 Apr 21;9:e11165. doi: 10.7717/peerj.11165. eCollection 2021.
6
Mutations of the Transcriptional Corepressor ZMYM2 Cause Syndromic Urinary Tract Malformations.
Am J Hum Genet. 2020 Oct 1;107(4):727-742. doi: 10.1016/j.ajhg.2020.08.013. Epub 2020 Sep 4.
7
De Novo Variants Disturbing the Transactivation Capacity of POU3F3 Cause a Characteristic Neurodevelopmental Disorder.
Am J Hum Genet. 2019 Aug 1;105(2):403-412. doi: 10.1016/j.ajhg.2019.06.007. Epub 2019 Jul 11.
8
Functional characterization of TBR1 variants in neurodevelopmental disorder.
Sci Rep. 2018 Sep 24;8(1):14279. doi: 10.1038/s41598-018-32053-6.
9
Molecular Evidence of Adenosine Deaminase Linking Adenosine A Receptor and CD26 Proteins.
Front Pharmacol. 2018 Feb 15;9:106. doi: 10.3389/fphar.2018.00106. eCollection 2018.
10
Functional characterization of rare FOXP2 variants in neurodevelopmental disorder.
J Neurodev Disord. 2016 Nov 28;8:44. doi: 10.1186/s11689-016-9177-2. eCollection 2016.

本文引用的文献

1
Neurogenomics of speech and language disorders: the road ahead.
Genome Biol. 2013 Apr 18;14(4):204. doi: 10.1186/gb-2013-14-4-204.
2
Decoding the genetics of speech and language.
Curr Opin Neurobiol. 2013 Feb;23(1):43-51. doi: 10.1016/j.conb.2012.11.006. Epub 2012 Dec 7.
3
Enhanced BRET Technology for the Monitoring of Agonist-Induced and Agonist-Independent Interactions between GPCRs and β-Arrestins.
Front Endocrinol (Lausanne). 2011 Jan 14;1:12. doi: 10.3389/fendo.2010.00012. eCollection 2010.
4
Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries.
Cell. 2012 Apr 27;149(3):525-37. doi: 10.1016/j.cell.2012.03.028. Epub 2012 Apr 19.
5
Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations.
Nat Genet. 2011 Jun;43(6):585-9. doi: 10.1038/ng.835. Epub 2011 May 15.
6
De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment.
Am J Hum Genet. 2010 Nov 12;87(5):671-8. doi: 10.1016/j.ajhg.2010.09.017. Epub 2010 Oct 14.
8
Mutations in the DNA-binding domain of NR2E3 affect in vivo dimerization and interaction with CRX.
PLoS One. 2009 Oct 12;4(10):e7379. doi: 10.1371/journal.pone.0007379.
9
FOXP2 as a molecular window into speech and language.
Trends Genet. 2009 Apr;25(4):166-77. doi: 10.1016/j.tig.2009.03.002. Epub 2009 Mar 21.
10
Two-hybrid technologies in proteomics research.
Curr Opin Biotechnol. 2008 Aug;19(4):316-23. doi: 10.1016/j.copbio.2008.06.005. Epub 2008 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验