Suppr超能文献

双电子-电子共振揭示 cAMP 诱导 HCN 通道构象变化。

Double electron-electron resonance reveals cAMP-induced conformational change in HCN channels.

机构信息

Departments of Physiology and Biophysics and

Departments of Physiology and Biophysics andChemistry, University of Washington, Seattle, WA 98195

出版信息

Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9816-21. doi: 10.1073/pnas.1405371111. Epub 2014 Jun 23.

Abstract

Binding of 3',5'-cyclic adenosine monophosphate (cAMP) to hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels regulates their gating. cAMP binds to a conserved intracellular cyclic nucleotide-binding domain (CNBD) in the channel, increasing the rate and extent of activation of the channel and shifting activation to less hyperpolarized voltages. The structural mechanism underlying this regulation, however, is unknown. We used double electron-electron resonance (DEER) spectroscopy to directly map the conformational ensembles of the CNBD in the absence and presence of cAMP. Site-directed, double-cysteine mutants in a soluble CNBD fragment were spin-labeled, and interspin label distance distributions were determined using DEER. We found motions of up to 10 Å induced by the binding of cAMP. In addition, the distributions were narrower in the presence of cAMP. Continuous-wave electron paramagnetic resonance studies revealed changes in mobility associated with cAMP binding, indicating less conformational heterogeneity in the cAMP-bound state. From the measured DEER distributions, we constructed a coarse-grained elastic-network structural model of the cAMP-induced conformational transition. We find that binding of cAMP triggers a reorientation of several helices within the CNBD, including the C-helix closest to the cAMP-binding site. These results provide a basis for understanding how the binding of cAMP is coupled to channel opening in HCN and related channels.

摘要

3',5'-环磷酸腺苷(cAMP)与超极化激活环核苷酸门控(HCN)离子通道的结合调节其门控。cAMP 与通道中保守的细胞内环核苷酸结合域(CNBD)结合,增加通道的激活速率和程度,并将激活转移到更去极化的电压。然而,这种调节的结构机制尚不清楚。我们使用双电子-电子共振(DEER)光谱技术直接绘制了 CNBD 在没有和存在 cAMP 时的构象总体。在可溶性 CNBD 片段中的定点双半胱氨酸突变体被自旋标记,并使用 DEER 确定了自旋标记之间的距离分布。我们发现 cAMP 结合诱导了高达 10 Å 的运动。此外,在存在 cAMP 的情况下,分布更窄。连续波电子顺磁共振研究揭示了与 cAMP 结合相关的迁移率变化,表明 cAMP 结合状态的构象异质性较小。根据测量的 DEER 分布,我们构建了 cAMP 诱导构象转变的粗粒度弹性网络结构模型。我们发现,cAMP 的结合引发了 CNBD 内几个螺旋的重新取向,包括最接近 cAMP 结合位点的 C 螺旋。这些结果为理解 cAMP 的结合如何与 HCN 和相关通道的通道开放偶联提供了基础。

相似文献

1
Double electron-electron resonance reveals cAMP-induced conformational change in HCN channels.
Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9816-21. doi: 10.1073/pnas.1405371111. Epub 2014 Jun 23.
2
Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14577-82. doi: 10.1073/pnas.1410389111. Epub 2014 Sep 2.
3
Structure and Energetics of Allosteric Regulation of HCN2 Ion Channels by Cyclic Nucleotides.
J Biol Chem. 2016 Jan 1;291(1):371-81. doi: 10.1074/jbc.M115.696450. Epub 2015 Nov 11.
5
Mechanism for the inhibition of the cAMP dependence of HCN ion channels by the auxiliary subunit TRIP8b.
J Biol Chem. 2017 Oct 27;292(43):17794-17803. doi: 10.1074/jbc.M117.800722. Epub 2017 Sep 1.
6
Structure of the SthK carboxy-terminal region reveals a gating mechanism for cyclic nucleotide-modulated ion channels.
PLoS One. 2015 Jan 27;10(1):e0116369. doi: 10.1371/journal.pone.0116369. eCollection 2015.
10
Flavonoid regulation of HCN2 channels.
J Biol Chem. 2013 Nov 15;288(46):33136-45. doi: 10.1074/jbc.M113.501759. Epub 2013 Oct 1.

引用本文的文献

1
Transcriptome Reveals Candidate Genes Responsive to Cold Stress in Agave.
Plants (Basel). 2025 Feb 7;14(4):513. doi: 10.3390/plants14040513.
3
Protein Modeling with DEER Spectroscopy.
Annu Rev Biophys. 2025 May;54(1):35-57. doi: 10.1146/annurev-biophys-030524-013431. Epub 2024 Dec 17.
6
A novel approach to modeling side chain ensembles of the bifunctional spin label RX.
bioRxiv. 2023 May 24:2023.05.24.542139. doi: 10.1101/2023.05.24.542139.
7
chiLife: An open-source Python package for in silico spin labeling and integrative protein modeling.
PLoS Comput Biol. 2023 Mar 31;19(3):e1010834. doi: 10.1371/journal.pcbi.1010834. eCollection 2023 Mar.
8
The cAMP-signaling cancers: Clinically-divergent disorders with a common central pathway.
Front Endocrinol (Lausanne). 2022 Oct 13;13:1024423. doi: 10.3389/fendo.2022.1024423. eCollection 2022.
9
Comparative evaluation of spin-label modeling methods for protein structural studies.
Biophys J. 2022 Sep 20;121(18):3508-3519. doi: 10.1016/j.bpj.2022.08.002. Epub 2022 Aug 10.
10
The structure of the native CNGA1/CNGB1 CNG channel from bovine retinal rods.
Nat Struct Mol Biol. 2022 Jan;29(1):32-39. doi: 10.1038/s41594-021-00700-8. Epub 2021 Dec 30.

本文引用的文献

1
Determination of End-to-End Distances in a Series of TEMPO Diradicals of up to 2.8 nm Length with a New Four-Pulse Double Electron Electron Resonance Experiment.
Angew Chem Int Ed Engl. 1998 Nov 2;37(20):2833-2837. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2833::AID-ANIE2833>3.0.CO;2-7.
2
Characterization of Protein Conformational Changes with Sparse Spin-Label Distance Constraints.
J Chem Theory Comput. 2012 Oct 9;8(10):3854-63. doi: 10.1021/ct300113z. Epub 2012 May 3.
3
Structure of the C-terminal region of an ERG channel and functional implications.
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11648-53. doi: 10.1073/pnas.1306887110. Epub 2013 Jun 25.
4
A secondary structural transition in the C-helix promotes gating of cyclic nucleotide-regulated ion channels.
J Biol Chem. 2013 May 3;288(18):12944-56. doi: 10.1074/jbc.M113.464123. Epub 2013 Mar 22.
5
Structure of the carboxy-terminal region of a KCNH channel.
Nature. 2012 Jan 9;481(7382):530-3. doi: 10.1038/nature10735.
6
Energetics of cyclic AMP binding to HCN channel C terminus reveal negative cooperativity.
J Biol Chem. 2012 Jan 2;287(1):600-606. doi: 10.1074/jbc.M111.269563. Epub 2011 Nov 14.
9
Structural insights into conformational changes of a cyclic nucleotide-binding domain in solution from Mesorhizobium loti K1 channel.
Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6121-6. doi: 10.1073/pnas.1015890108. Epub 2011 Mar 23.
10
Rotamer libraries of spin labelled cysteines for protein studies.
Phys Chem Chem Phys. 2011 Feb 14;13(6):2356-66. doi: 10.1039/c0cp01865a. Epub 2010 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验