Suppr超能文献

亨廷顿舞蹈病中纹状体直接和间接输出通路的功能差异

Functional Differences Between Direct and Indirect Striatal Output Pathways in Huntington's Disease.

作者信息

Galvan Laurie, André Véronique M, Wang Elizabeth A, Cepeda Carlos, Levine Michael S

机构信息

Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.

出版信息

J Huntingtons Dis. 2012;1(1):17-25. doi: 10.3233/JHD-2012-120009.

Abstract

There is morphological evidence for differential alterations in striatal medium-sized spiny neurons (MSNs) giving rise to the direct and indirect output pathways in Huntington's disease (HD). MSNs of the indirect pathway appear to be particularly vulnerable and markers for these neurons are lost early in postmortem brains and in genetic mouse models. In contrast, MSNs of the direct pathway appear to be relatively spared in the early stages. Because of the great morphological and electrophysiological similarities between MSNs of these pathways, until recently it was difficult to tease apart their functional alterations in HD models. The recent use of the enhanced green fluorescent protein gene as a reporter to identify dopamine D1 (direct pathway) and D2 (indirect pathway) receptor-expressing MSNs has made it possible to examine synaptic function in each pathway. The outcomes of such studies demonstrate significant time-dependent changes in the balance of excitatory and inhibitory inputs to both direct and indirect pathway MSNs in HD and emphasize early increases in both excitatory and inhibitory inputs to direct pathway MSNs. There also is a strong influence of alterations in dopamine modulation that possibly cause some of the changes in excitatory and inhibitory synaptic transmission in the HD models. These changes will markedly alter the output structures, the GPi and the SNr. In the future, the use of combined optogenetics with identified neurons in each pathway will help unravel the next set of questions about how the output nuclei are affected in HD.

摘要

在亨廷顿舞蹈症(HD)中,有形态学证据表明,纹状体中型多棘神经元(MSN)产生直接和间接输出通路时存在差异变化。间接通路的MSN似乎特别脆弱,在死后大脑和基因小鼠模型中,这些神经元的标志物会早期丢失。相比之下,直接通路的MSN在早期阶段似乎相对未受影响。由于这些通路的MSN在形态和电生理上有很大的相似性,直到最近,在HD模型中区分它们的功能变化仍很困难。最近使用增强型绿色荧光蛋白基因作为报告基因来识别表达多巴胺D1(直接通路)和D2(间接通路)受体的MSN,使得研究每个通路的突触功能成为可能。这些研究结果表明,HD中直接和间接通路MSN的兴奋性和抑制性输入平衡存在显著的时间依赖性变化,并强调直接通路MSN的兴奋性和抑制性输入在早期均增加。多巴胺调节的改变也有很强的影响,可能导致HD模型中兴奋性和抑制性突触传递的一些变化。这些变化将显著改变输出结构,即苍白球内侧核(GPi)和黑质网状部(SNr)。未来,将光遗传学与每个通路中已识别的神经元结合使用,将有助于解开关于HD中输出核如何受到影响的下一组问题。

相似文献

2
Striatal Direct and Indirect Pathway Output Structures Are Differentially Altered in Mouse Models of Huntington's Disease.
J Neurosci. 2018 May 16;38(20):4678-4694. doi: 10.1523/JNEUROSCI.0434-18.2018. Epub 2018 Apr 24.
3
Differential electrophysiological changes in striatal output neurons in Huntington's disease.
J Neurosci. 2011 Jan 26;31(4):1170-82. doi: 10.1523/JNEUROSCI.3539-10.2011.
4
Altered Balance of Activity in the Striatal Direct and Indirect Pathways in Mouse Models of Huntington's Disease.
Front Syst Neurosci. 2011 Jun 16;5:46. doi: 10.3389/fnsys.2011.00046. eCollection 2011.
8
Multiple sources of striatal inhibition are differentially affected in Huntington's disease mouse models.
J Neurosci. 2013 Apr 24;33(17):7393-406. doi: 10.1523/JNEUROSCI.2137-12.2013.
9
Synaptic scaling up in medium spiny neurons of aged BACHD mice: A slow-progression model of Huntington's disease.
Neurobiol Dis. 2016 Feb;86:131-9. doi: 10.1016/j.nbd.2015.10.016. Epub 2015 Nov 25.

引用本文的文献

1
Presymptomatic targeted circuit manipulation for ameliorating Huntington's disease pathogenesis.
iScience. 2025 Feb 13;28(3):112022. doi: 10.1016/j.isci.2025.112022. eCollection 2025 Mar 21.
2
Presymptomatic Targeted Circuit Manipulation for Ameliorating Huntington's Disease Pathogenesis.
bioRxiv. 2024 Jul 24:2024.07.24.604946. doi: 10.1101/2024.07.24.604946.
3
Striatal insights: a cellular and molecular perspective on repetitive behaviors in pathology.
Front Cell Neurosci. 2024 Mar 27;18:1386715. doi: 10.3389/fncel.2024.1386715. eCollection 2024.
4
Case report: Cerebellar sparing in juvenile Huntington's disease.
Front Neurol. 2023 Jan 11;13:1089193. doi: 10.3389/fneur.2022.1089193. eCollection 2022.
5
Hunting for the cause: Evidence for prion-like mechanisms in Huntington's disease.
Front Neurosci. 2022 Aug 24;16:946822. doi: 10.3389/fnins.2022.946822. eCollection 2022.
6
Cocaine-induced neuron subtype mitochondrial dynamics through Egr3 transcriptional regulation.
Mol Brain. 2021 Jun 29;14(1):101. doi: 10.1186/s13041-021-00800-y.
7
D1R- and D2R-Medium-Sized Spiny Neurons Diversity: Insights Into Striatal Vulnerability to Huntington's Disease Mutation.
Front Cell Neurosci. 2021 Feb 10;15:628010. doi: 10.3389/fncel.2021.628010. eCollection 2021.
8
Enhanced GABAergic Inhibition of Cholinergic Interneurons in the zQ175 Mouse Model of Huntington's Disease.
Front Syst Neurosci. 2021 Jan 20;14:626412. doi: 10.3389/fnsys.2020.626412. eCollection 2020.
9
State-of-the-art pharmacological approaches to reduce chorea in Huntington's disease.
Expert Opin Pharmacother. 2021 Jun;22(8):1015-1024. doi: 10.1080/14656566.2021.1876666. Epub 2021 Feb 8.
10
Abnormal development of cerebellar-striatal circuitry in Huntington disease.
Neurology. 2020 May 5;94(18):e1908-e1915. doi: 10.1212/WNL.0000000000009364. Epub 2020 Apr 7.

本文引用的文献

1
Differential modulation of excitatory and inhibitory striatal synaptic transmission by histamine.
J Neurosci. 2011 Oct 26;31(43):15340-51. doi: 10.1523/JNEUROSCI.3144-11.2011.
2
Pathophysiology of Huntington's disease: time-dependent alterations in synaptic and receptor function.
Neuroscience. 2011 Dec 15;198:252-73. doi: 10.1016/j.neuroscience.2011.08.052. Epub 2011 Aug 27.
3
A history of optogenetics: the development of tools for controlling brain circuits with light.
F1000 Biol Rep. 2011;3:11. doi: 10.3410/B3-11. Epub 2011 May 3.
4
Optogenetics in neural systems.
Neuron. 2011 Jul 14;71(1):9-34. doi: 10.1016/j.neuron.2011.06.004.
5
Altered Balance of Activity in the Striatal Direct and Indirect Pathways in Mouse Models of Huntington's Disease.
Front Syst Neurosci. 2011 Jun 16;5:46. doi: 10.3389/fnsys.2011.00046. eCollection 2011.
6
Optogenetic manipulation of neural circuitry in vivo.
Curr Opin Neurobiol. 2011 Jun;21(3):433-9. doi: 10.1016/j.conb.2011.02.010. Epub 2011 Mar 21.
7
Differential electrophysiological changes in striatal output neurons in Huntington's disease.
J Neurosci. 2011 Jan 26;31(4):1170-82. doi: 10.1523/JNEUROSCI.3539-10.2011.
8
Functional increase of brain histaminergic signaling in Huntington's disease.
Brain Pathol. 2011 Jul;21(4):419-27. doi: 10.1111/j.1750-3639.2010.00465.x. Epub 2010 Dec 27.
9
Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry.
Nature. 2010 Jul 29;466(7306):622-6. doi: 10.1038/nature09159. Epub 2010 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验