Zhao Weirong, Ai Zhuyu, Dai Jiusong, Zhang Meng
Department of Environmental Engineering, Zhejiang University, Hangzhou, China.
PLoS One. 2014 Aug 4;9(8):e103671. doi: 10.1371/journal.pone.0103671. eCollection 2014.
Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading.
Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations.
DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2.
Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and increased the utilization of solar energy, greatly boosting the photocatalytic activity for hydrogen production under UV-vis light.
光催化水分解制氢是解决诸多能源和环境问题的一种潜在途径。开发可见光活性光催化剂以有效利用太阳光,并找到提高光催化析氢活性的合适方法一直是研究的热点。本研究旨在扩大太阳光的利用范围,并通过氮掺杂和金负载来提高二氧化钛的光催化活性。
合成了金/氮掺杂二氧化钛光催化剂,并分别在紫外光和紫外-可见光照射下成功用于光催化水分解制氢。使用X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(DRS)、光致发光光谱(PL)和光电化学表征对样品进行了表征。
DRS表明,通过氮掺杂和金沉积分别将光吸收扩展到了可见光区域。PL分析表明,氮掺杂导致电子-空穴复合,而负载的金颗粒有效抑制了电子-空穴复合。在紫外光照射下,合成样品的光催化产氢速率顺序为:金/二氧化钛>金/氮掺杂二氧化钛>二氧化钛>氮掺杂二氧化钛。而在紫外-可见光照射下,氮掺杂二氧化钛和金/氮掺杂二氧化钛样品的析氢量高于其相应的无氮样品(二氧化钛和金/二氧化钛)。这种不一致的结果可归因于氮掺杂和金颗粒的表面等离子体共振(SPR)效应扩展了可见光吸收。光电化学表征进一步表明金/氮掺杂二氧化钛的可见光响应增强。
比较研究表明,氮掺杂和金负载相结合增强了二氧化钛的可见光响应,提高了太阳能的利用率,极大地提高了紫外-可见光下的光催化产氢活性。