Siala Wafi, Mingeot-Leclercq Marie-Paule, Tulkens Paul M, Hallin Marie, Denis Olivier, Van Bambeke Françoise
Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium.
Laboratoire de Microbiologie et Centre de Référence Belge des Staphylocoques, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.
Antimicrob Agents Chemother. 2014 Nov;58(11):6385-97. doi: 10.1128/AAC.03482-14. Epub 2014 Aug 11.
Biofilm-related infections remain a scourge. In an in vitro model of biofilms using Staphylococcus aureus reference strains, delafloxacin and daptomycin were found to be the most active among the antibiotics from 8 different pharmacological classes (J. Bauer, W. Siala, P. M. Tulkens, and F. Van Bambeke, Antimicrob. Agents Chemother. 57:2726-2737, 2013, doi:10.1128/AAC.00181-13). In this study, we compared delafloxacin to daptomycin and vancomycin using biofilms produced by 7 clinical strains (S. aureus epidemic clones CC5 and CC8) in order to rationalize the differences observed between the antibiotics and strains. The effects of the antibiotics on bacterial viability (resazurin reduction assay) and biomass (crystal violet staining) were measured and correlated with the proportion of polysaccharides in the matrix, the local microenvironmental pH (micro-pH), and the antibiotic penetration in the biofilm. At clinically meaningful concentrations, delafloxacin, daptomycin, and vancomycin caused a ≥25% reduction in viability against the biofilms formed by 5, 4, and 3 strains, respectively. The antibiotic penetration within the biofilms ranged from 0.6 to 52% for delafloxacin, 0.2 to 10% for daptomycin, and 0.2 to 1% for vancomycin; for delafloxacin, this was inversely related to the polysaccharide proportion in the matrix. Six biofilms were acidic, explaining the high potency of delafloxacin (lower MICs at acidic pH). Norspermidine and norspermine (disassembling the biofilm matrix) drastically increased delafloxacin potency and efficacy (50% reduction in viability for 6 biofilms at clinically meaningful concentrations) in direct correlation with its increased penetration within the biofilm, while they only modestly improved daptomycin efficacy (50% reduction in viability for 2 biofilms) and penetration, and they showed marginal effects with vancomycin. Delafloxacin potency and efficacy against biofilms are benefited by its penetration into the matrix and the local acidic micro-pH.
生物膜相关感染仍然是一大祸害。在使用金黄色葡萄球菌参考菌株的生物膜体外模型中,发现地拉氟沙星和达托霉素在8种不同药理学类别的抗生素中活性最强(J. Bauer、W. Siala、P. M. Tulkens和F. Van Bambeke,《抗菌药物化学治疗》57:2726 - 2737,2013年,doi:10.1128/AAC.00181 - 13)。在本研究中,我们使用7种临床菌株(金黄色葡萄球菌流行克隆CC5和CC8)产生的生物膜,将地拉氟沙星与达托霉素和万古霉素进行比较,以阐明抗生素与菌株之间观察到的差异。测量了抗生素对细菌活力(刃天青还原试验)和生物量(结晶紫染色)的影响,并将其与基质中多糖的比例、局部微环境pH值(微pH)以及抗生素在生物膜中的渗透情况相关联。在具有临床意义的浓度下,地拉氟沙星、达托霉素和万古霉素分别使5种、4种和3种菌株形成的生物膜的活力降低≥25%。地拉氟沙星在生物膜内的抗生素渗透率为0.6%至52%,达托霉素为0.2%至10%,万古霉素为0.2%至1%;对于地拉氟沙星,这与基质中多糖的比例呈负相关。六种生物膜呈酸性,这解释了地拉氟沙星的高效能(在酸性pH下最低抑菌浓度较低)。去甲亚精胺和去甲精胺(分解生物膜基质)显著提高了地拉氟沙星的效能和疗效(在具有临床意义的浓度下,6种生物膜的活力降低50%),这与其在生物膜内渗透率的增加直接相关,而它们仅适度提高了达托霉素的疗效(2种生物膜的活力降低50%)和渗透率,并且对万古霉素显示出边际效应。地拉氟沙星对生物膜的效能和疗效得益于其渗透到基质以及局部酸性微pH环境中。