Buxboim Amnon, Swift Joe, Irianto Jerome, Spinler Kyle R, Dingal P C Dave P, Athirasala Avathamsa, Kao Yun-Ruei C, Cho Sangkyun, Harada Takamasa, Shin Jae-Won, Discher Dennis E
Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA; Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA.
Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA.
Curr Biol. 2014 Aug 18;24(16):1909-17. doi: 10.1016/j.cub.2014.07.001. Epub 2014 Aug 7.
Tissue microenvironments are characterized not only in terms of chemical composition but also by collective properties such as stiffness, which influences the contractility of a cell, its adherent morphology, and even differentiation. The nucleoskeletal protein lamin-A,C increases with matrix stiffness, confers nuclear mechanical properties, and influences differentiation of mesenchymal stem cells (MSCs), whereas B-type lamins remain relatively constant. Here we show in single-cell analyses that matrix stiffness couples to myosin-II activity to promote lamin-A,C dephosphorylation at Ser22, which regulates turnover, lamina physical properties, and actomyosin expression. Lamin-A,C phosphorylation is low in interphase versus dividing cells, and its levels rise with states of nuclear rounding in which myosin-II generates little to no tension. Phosphorylated lamin-A,C localizes to nucleoplasm, and phosphorylation is enriched on lamin-A,C fragments and is suppressed by a cyclin-dependent kinase (CDK) inhibitor. Lamin-A,C knockdown in primary MSCs suppresses transcripts predominantly among actomyosin genes, especially in the serum response factor (SRF) pathway. Levels of myosin-IIA thus parallel levels of lamin-A,C, with phosphosite mutants revealing a key role for phosphoregulation. In modeling the system as a parsimonious gene circuit, we show that tension-dependent stabilization of lamin-A,C and myosin-IIA can suitably couple nuclear and cell morphology downstream of matrix mechanics.
组织微环境不仅由化学成分来表征,还具有诸如硬度等集体特性,硬度会影响细胞的收缩性、其黏附形态,甚至分化。核骨架蛋白层粘连蛋白A、C随着基质硬度增加,赋予细胞核机械特性,并影响间充质干细胞(MSC)的分化,而B型层粘连蛋白则保持相对恒定。在此我们通过单细胞分析表明,基质硬度与肌球蛋白-II活性相关联,以促进层粘连蛋白A、C在Ser22位点的去磷酸化,这调节了其周转、核纤层物理特性以及肌动球蛋白的表达。与分裂细胞相比,层粘连蛋白A、C在间期的磷酸化水平较低,其水平随着细胞核变圆的状态而升高,此时肌球蛋白-II几乎不产生或不产生张力。磷酸化的层粘连蛋白A、C定位于核质,磷酸化在层粘连蛋白A、C片段上富集,并受到细胞周期蛋白依赖性激酶(CDK)抑制剂的抑制。原代间充质干细胞中层粘连蛋白A、C的敲低主要抑制肌动球蛋白基因中的转录本,尤其是在血清反应因子(SRF)途径中。因此,肌球蛋白-IIA的水平与层粘连蛋白A、C的水平平行,磷酸化位点突变体揭示了磷酸化调节的关键作用。在将该系统建模为一个简约的基因回路时,我们表明层粘连蛋白A、C和肌球蛋白-IIA的张力依赖性稳定可以在基质力学下游适当地耦合细胞核和细胞形态。