Yan Qing
PharmTao, 5672, 4601 Lafayette Street, Santa Clara, CA, 95056-5672, USA,
Methods Mol Biol. 2014;1175:19-34. doi: 10.1007/978-1-4939-0956-8_2.
The exponential growth of experimental and clinical data generated from systematic studies, the complexity in health and diseases, and the request for the establishment of systems models are bringing bioinformatics to the center stage of pharmacogenomics and systems biology. Bioinformatics plays an essential role in bridging the gap among different knowledge domains for the translation of the voluminous data into better diagnosis, prognosis, prevention, and treatment. Bioinformatics is essential in finding the spatiotemporal patterns in pharmacogenomics, including the time-series analyses of the associations between genetic structural variations and functional alterations such as drug responses. The elucidation of the cross talks among different systems levels and time scales can contribute to the discovery of accurate and robust biomarkers at various diseases stages for the development of systems and dynamical medicine. Various resources are available for such purposes, including databases and tools supporting "omics" studies such as genomics, proteomics, epigenomics, transcriptomics, metabolomics, lipidomics, pharmacogenomics, and chronomics. The combination of bioinformatics and health informatics methods would provide powerful decision support in both scientific and clinical environments. Data integration, data mining, and knowledge discovery (KD) methods would enable the simulation of complex systems and dynamical networks to establish predictive models for achieving predictive, preventive, and personalized medicine.
系统研究产生的实验和临床数据呈指数增长、健康与疾病的复杂性以及建立系统模型的需求,正将生物信息学推向药物基因组学和系统生物学的核心舞台。生物信息学在弥合不同知识领域之间的差距,将大量数据转化为更好的诊断、预后、预防和治疗方面发挥着至关重要的作用。生物信息学对于发现药物基因组学中的时空模式至关重要,包括对遗传结构变异与功能改变(如药物反应)之间关联的时间序列分析。阐明不同系统水平和时间尺度之间的相互作用,有助于在各种疾病阶段发现准确且可靠的生物标志物,以推动系统和动态医学的发展。为此有各种资源可供使用,包括支持“组学”研究的数据库和工具,如基因组学、蛋白质组学、表观基因组学、转录组学、代谢组学、脂质组学、药物基因组学和时辰组学。生物信息学和健康信息学方法的结合将在科学和临床环境中提供强大的数据支持。数据整合、数据挖掘和知识发现(KD)方法将能够模拟复杂系统和动态网络,以建立预测模型,从而实现预测性、预防性和个性化医疗。