Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, 1300 York Ave, New York, NY 100652, USA.
Thomas Jefferson University, Department of Pathology, Anatomy, and Cell Biology, Philadelphia, PA 19107, USA.
Exp Eye Res. 2014 Sep;126:5-15. doi: 10.1016/j.exer.2014.04.021.
The retinal pigment epithelium (RPE) comprises a monolayer of polarized pigmented epithelial cells that is strategically interposed between the neural retina and the fenestrated choroid capillaries. The RPE performs a variety of vectorial transport functions (water, ions, metabolites, nutrients and waste products) that regulate the composition of the subretinal space and support the functions of photoreceptors (PRs) and other cells in the neural retina. To this end, RPE cells display a polarized distribution of channels, transporters and receptors in their plasma membrane (PM) that is remarkably different from that found in conventional extra-ocular epithelia, e.g. intestine, kidney, and gall bladder. This characteristic PM protein polarity of RPE cells depends on the interplay of sorting signals in the RPE PM proteins and sorting mechanisms and biosynthetic/recycling trafficking routes in the RPE cell. Although considerable progress has been made in our understanding of the RPE trafficking machinery, most available data have been obtained from immortalized RPE cell lines that only partially maintain the RPE phenotype and by extrapolation of data obtained in the prototype Madin-Darby Canine Kidney (MDCK) cell line. The increasing availability of RPE cell cultures that more closely resemble the RPE in vivo together with the advent of advanced live imaging microscopy techniques provides a platform and an opportunity to rapidly expand our understanding of how polarized protein trafficking contributes to RPE PM polarity.
视网膜色素上皮 (RPE) 由一层极化的色素上皮细胞组成,位于神经视网膜和有孔的脉络膜毛细血管之间。RPE 执行多种载体转运功能(水、离子、代谢物、营养物质和废物),调节视网膜下腔的组成,并支持光感受器 (PR) 和神经视网膜中其他细胞的功能。为此,RPE 细胞在其质膜 (PM) 中显示出通道、转运蛋白和受体的极化分布,这与传统的眼外上皮(如肠、肾和胆囊)中的分布明显不同。RPE 细胞 PM 蛋白的这种特征性极性取决于 RPE PM 蛋白中的分选信号与分选机制以及 RPE 细胞中的生物合成/回收运输途径之间的相互作用。尽管我们在理解 RPE 运输机制方面取得了相当大的进展,但大多数可用数据是从仅部分保留 RPE 表型的永生化 RPE 细胞系中获得的,并通过从原型 Madin-Darby 犬肾 (MDCK) 细胞系中获得的数据推断得出。越来越多的与体内 RPE 更相似的 RPE 细胞培养物的出现,以及先进的活细胞成像显微镜技术的出现,为我们提供了一个平台和机会,可以快速扩展我们对极性蛋白转运如何促进 RPE PM 极性的理解。