Suppr超能文献

抗血管内皮生长因子用于治疗新生血管性年龄相关性黄斑变性。

Anti-vascular endothelial growth factor for neovascular age-related macular degeneration.

作者信息

Solomon Sharon D, Lindsley Kristina, Vedula Satyanarayana S, Krzystolik Magdalena G, Hawkins Barbara S

机构信息

Wilmer Eye Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Maumenee 740, Baltimore, Maryland, USA, 21287.

出版信息

Cochrane Database Syst Rev. 2014 Aug 29;8(8):CD005139. doi: 10.1002/14651858.CD005139.pub3.

Abstract

BACKGROUND

Age-related macular degeneration (AMD) is the most common cause of uncorrectable severe vision loss in people aged 55 years and older in the developed world. Choroidal neovascularization (CNV) secondary to neovascular AMD accounts for most AMD-related severe vision loss. Anti-vascular endothelial growth factor (anti-VEGF) agents, injected intravitreally, aim to block the growth of abnormal blood vessels in the eye to prevent vision loss and, in some instances, improve vision.

OBJECTIVES

To investigate: (1) the ocular and systemic effects of, and quality of life associated with, intravitreally injected anti-VEGF agents (pegaptanib, ranibizumab, and bevacizumab) for the treatment of neovascular AMD compared with no anti-VEGF treatment; and (2) the relative effects of one anti-VEGF agent compared with another when administered in comparable dosages and regimens.

SEARCH METHODS

We searched Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 3), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to March 2014), EMBASE (January 1980 to March 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to March 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We used no date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 27 March 2014.

SELECTION CRITERIA

We included randomized controlled trials (RCTs) that evaluated pegaptanib, ranibizumab, or bevacizumab versus each other or a control treatment (e.g., sham treatment or photodynamic therapy). All trials followed participants for at least one year.

DATA COLLECTION AND ANALYSIS

Two review authors independently screened records, extracted data, and assessed risks of bias. We contacted trial authors for additional data. We analyzed outcomes as risk ratios (RRs) or mean differences (MDs). We used the standard methodological procedures expected by The Cochrane Collaboration.

MAIN RESULTS

We included 12 RCTs including a total of 5496 participants with neovascular AMD (the number of participants per trial ranged from 28 to 1208). One trial compared pegaptanib, three trials ranibizumab, and two trials bevacizumab versus controls; six trials compared bevacizumab with ranibizumab. Four trials were conducted by pharmaceutical companies; none of the eight studies which evaluated bevacizumab were funded by pharmaceutical companies. The trials were conducted at various centers across five continents (North and South America, Europe, Asia and Australia). The overall quality of the evidence was very good, with most trials having an overall low risk of bias.When compared with control treatments, participants who received any of the three anti-VEGF agents were more likely to have gained 15 letters or more of visual acuity, lost fewer than 15 letters of visual acuity, and had vision 20/200 or better after one year of follow up. Visual acuity outcomes after bevacizumab and ranibizumab were similar when the same regimens were compared in the same RCTs, despite the substantially lower cost for bevacizumab compared with ranibizumab. No trial directly compared pegaptanib with other anti-VEGF agents; however, when compared with controls, ranibizumab or bevacizumab yielded larger improvements in visual acuity outcomes than pegaptanib.Participants treated with anti-VEGFs showed improvements in morphologic outcomes (e.g., size of CNV or central retinal thickness) compared with participants not treated with anti-VEGF agents. There was less reduction in central retinal thickness among bevacizumab-treated participants than among ranibizumab-treated participants after one year (MD -13.97 μm; 95% confidence interval (CI) -26.52 to -1.41); however, this difference is within the range of measurement error and we did not interpret it as being clinically meaningful.Ocular inflammation and increased intraocular pressure after intravitreal injection were the most frequently reported serious ocular adverse events. Endophthalmitis was reported in fewer than 1% of anti-VEGF treated participants; no cases were reported in control groups. The occurrence of serious systemic adverse events was comparable across anti-VEGF-treated groups and control groups; however, the numbers of events and trial participants may have been insufficient to detect a meaningful difference between groups. Data for visual function, quality of life, and economic outcomes were sparsely measured and reported.

AUTHORS' CONCLUSIONS: The results of this review indicate the effectiveness of anti-VEGF agents (pegaptanib, ranibizumab, and bevacizumab) in terms of maintaining visual acuity; ranibizumab and bevacizumab were also shown to improve visual acuity. The information available on the adverse effects of each medication do not suggest a higher incidence of potentially vision-threatening complications with intravitreal injection compared with control interventions; however, clinical trial sample sizes may not have been sufficient to detect rare safety outcomes. Research evaluating variable dosing regimens with anti-VEGF agents, effects of long-term use, combination therapies (e.g., anti-VEGF treatment plus photodynamic therapy), and other methods of delivering the agents should be incorporated into future Cochrane reviews.

摘要

背景

年龄相关性黄斑变性(AMD)是发达国家55岁及以上人群中导致无法矫正的严重视力丧失的最常见原因。新生血管性AMD继发的脉络膜新生血管(CNV)是大多数与AMD相关的严重视力丧失的原因。玻璃体内注射抗血管内皮生长因子(anti-VEGF)药物旨在阻断眼内异常血管的生长,以防止视力丧失,在某些情况下还可改善视力。

目的

研究:(1)与未进行抗VEGF治疗相比,玻璃体内注射抗VEGF药物(培加他汀、兰尼单抗和贝伐单抗)治疗新生血管性AMD的眼部和全身影响以及与之相关的生活质量;(2)在可比剂量和给药方案下,一种抗VEGF药物与另一种抗VEGF药物的相对疗效。

检索方法

我们检索了Cochrane对照试验中心注册库(CENTRAL)(其中包含Cochrane眼科和视力组试验注册库)(2014年第3期)、Ovid MEDLINE、Ovid MEDLINE在研及其他未索引引文、Ovid MEDLINE日报、Ovid OLDMEDLINE(1946年1月至2014年3月)、EMBASE(1980年1月至2014年3月)、拉丁美洲和加勒比健康科学文献数据库(LILACS)(1982年1月至2014年3月)、对照试验元注册库(mRCT)(www.controlled-trials.com)、ClinicalTrials.gov(www.clinicaltrials.gov)以及世界卫生组织(WHO)国际临床试验注册平台(ICTRP)(www.who.int/ictrp/search/en)。我们在电子检索试验时没有设置日期或语言限制。我们最后一次检索电子数据库是在2014年3月27日。

选择标准

我们纳入了评估培加他汀、兰尼单抗或贝伐单抗相互之间或与对照治疗(如假治疗或光动力疗法)对比的随机对照试验(RCT)。所有试验对参与者的随访时间至少为一年。

数据收集与分析

两位综述作者独立筛选记录、提取数据并评估偏倚风险。我们联系试验作者获取更多数据。我们将结果分析为风险比(RRs)或均值差(MDs)。我们采用了Cochrane协作网预期的标准方法程序。

主要结果

我们纳入了12项RCT,共5496名新生血管性AMD参与者(每项试验的参与者人数从28至1208不等)。一项试验对比了培加他汀,三项试验对比了兰尼单抗,两项试验对比了贝伐单抗与对照;六项试验对比了贝伐单抗与兰尼单抗。四项试验由制药公司开展;评估贝伐单抗的八项研究中无一由制药公司资助。这些试验在五大洲(北美洲、南美洲、欧洲、亚洲和澳大利亚)的多个中心进行。证据的总体质量非常好,大多数试验的总体偏倚风险较低。与对照治疗相比,接受三种抗VEGF药物中任何一种治疗的参与者在随访一年后更有可能获得15个及以上字母的视力提高、视力下降少于15个字母,且视力达到20/200或更好。在同一RCT中比较相同给药方案时,贝伐单抗和兰尼单抗治疗后的视力结果相似,尽管贝伐单抗的成本远低于兰尼单抗。没有试验直接对比培加他汀与其他抗VEGF药物;然而,与对照相比,兰尼单抗或贝伐单抗在视力结果方面比培加他汀有更大改善。与未接受抗VEGF药物治疗的参与者相比,接受抗VEGF治疗的参与者在形态学结果(如CNV大小或中心视网膜厚度)方面有改善。一年后,接受贝伐单抗治疗的参与者的中心视网膜厚度减少幅度小于接受兰尼单抗治疗的参与者(均值差 -13.97μm;95%置信区间(CI) -26.52至 -1.41);然而,这种差异在测量误差范围内,我们未将其解释为具有临床意义。玻璃体内注射后眼部炎症和眼压升高是最常报告 的严重眼部不良事件。接受抗VEGF治疗的参与者中报告眼内炎的比例不到1%;对照组未报告病例。抗VEGF治疗组和对照组中严重全身不良事件的发生率相当;然而,事件数量和试验参与者数量可能不足以检测出组间有意义的差异。视觉功能、生活质量和经济结果的数据测量和报告较少。

作者结论

本综述结果表明抗VEGF药物(培加他汀、兰尼单抗和贝伐单抗)在维持视力方面有效;兰尼单抗和贝伐单抗也显示可改善视力。每种药物不良反应的现有信息并未表明与对照干预相比,玻璃体内注射有更高的潜在威胁视力并发症发生率;然而,临床试验样本量可能不足以检测罕见的安全结果。评估抗VEGF药物不同给药方案、长期使用的效果、联合治疗(如抗VEGF治疗加光动力疗法)以及其他给药方法的研究应纳入未来的Cochrane综述。

相似文献

1
Anti-vascular endothelial growth factor for neovascular age-related macular degeneration.
Cochrane Database Syst Rev. 2014 Aug 29;8(8):CD005139. doi: 10.1002/14651858.CD005139.pub3.
2
Anti-vascular endothelial growth factor for neovascular age-related macular degeneration.
Cochrane Database Syst Rev. 2019 Mar 4;3(3):CD005139. doi: 10.1002/14651858.CD005139.pub4.
3
Aflibercept for neovascular age-related macular degeneration.
Cochrane Database Syst Rev. 2016 Feb 8;2(2):CD011346. doi: 10.1002/14651858.CD011346.pub2.
4
Anti-vascular endothelial growth factor for choroidal neovascularisation in people with pathological myopia.
Cochrane Database Syst Rev. 2016 Dec 15;12(12):CD011160. doi: 10.1002/14651858.CD011160.pub2.
5
Anti-vascular endothelial growth factor for proliferative diabetic retinopathy.
Cochrane Database Syst Rev. 2014 Nov 24;2014(11):CD008721. doi: 10.1002/14651858.CD008721.pub2.
6
Anti-vascular endothelial growth factor for diabetic macular oedema.
Cochrane Database Syst Rev. 2014 Oct 24(10):CD007419. doi: 10.1002/14651858.CD007419.pub4.
7
Anti-vascular endothelial growth factor biosimilars for neovascular age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Jun 3;6(6):CD015804. doi: 10.1002/14651858.CD015804.pub2.
8
Anti-vascular endothelial growth factor for macular oedema secondary to branch retinal vein occlusion.
Cochrane Database Syst Rev. 2013 Jan 31(1):CD009510. doi: 10.1002/14651858.CD009510.pub2.
9
Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Jun 22;6(6):CD007419. doi: 10.1002/14651858.CD007419.pub5.
10
Anti-vascular endothelial growth factor for macular oedema secondary to central retinal vein occlusion.
Cochrane Database Syst Rev. 2014 May 1;2014(5):CD007325. doi: 10.1002/14651858.CD007325.pub3.

引用本文的文献

1
Ethical integrity in systematic reviews and meta-analyses: challenges, pitfalls, and best practices in ophthalmology.
Med Hypothesis Discov Innov Ophthalmol. 2025 Jul 31;14(2):40-49. doi: 10.51329/mehdiophthal1522. eCollection 2025 Summer.
2
Recent advances in engineered exosome-based therapies for ocular vascular disease.
J Nanobiotechnology. 2025 Jul 19;23(1):526. doi: 10.1186/s12951-025-03589-3.
3
Japanese clinical guidelines for neovascular age-related macular degeneration.
Jpn J Ophthalmol. 2025 Jul 14. doi: 10.1007/s10384-025-01240-0.
4
Metabolomics analysis uncovers metabolic changes and remodeling of anti-VEGF therapy on macular edema.
Eye Vis (Lond). 2025 Jul 14;12(1):28. doi: 10.1186/s40662-025-00444-2.
5
Novel Handheld Device for Remote Monitoring of Dry Macular Degeneration and Patient Usability Assessment.
Diagnostics (Basel). 2025 May 28;15(11):1353. doi: 10.3390/diagnostics15111353.
6
Long-term effects of the COVID-19 lockdown on the structural and functional outcomes of neovascular AMD patients in Suzhou, China.
PLoS One. 2025 Mar 20;20(3):e0319677. doi: 10.1371/journal.pone.0319677. eCollection 2025.
7
How to Fabricate Hyaluronic Acid for Ocular Drug Delivery.
Pharmaceutics. 2024 Dec 16;16(12):1604. doi: 10.3390/pharmaceutics16121604.
8
The Effects of STRA6 Regulation of the Circadian Rhythm on Choroidal Neovascularization.
Invest Ophthalmol Vis Sci. 2024 Sep 3;65(11):21. doi: 10.1167/iovs.65.11.21.
9
Factors Affecting Disease Stability After Intravitreal Brolucizumab Injection for Refractory Neovascular Age-Related Macular Degeneration.
Ophthalmol Ther. 2024 Oct;13(10):2679-2695. doi: 10.1007/s40123-024-01010-0. Epub 2024 Aug 12.
10
Approaches for Increasing Cerebral Efflux of Amyloid-β in Experimental Systems.
J Alzheimers Dis. 2024;100(2):379-411. doi: 10.3233/JAD-240212.

本文引用的文献

1
Systemic safety of bevacizumab versus ranibizumab for neovascular age-related macular degeneration.
Cochrane Database Syst Rev. 2014 Sep 15;9(9):CD011230. doi: 10.1002/14651858.CD011230.pub2.
2
Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe: 1990-2010.
Br J Ophthalmol. 2014 May;98(5):629-38. doi: 10.1136/bjophthalmol-2013-304033. Epub 2014 Mar 24.
3
Long-term longitudinal study of patients treated with ranibizumab for neovascular age-related macular degeneration.
Curr Opin Ophthalmol. 2014 May;25(3):158-63. doi: 10.1097/ICU.0000000000000050.
4
Roche and Novartis colluded over wet AMD drugs, says Italian regulator.
BMJ. 2014 Mar 9;348:g2006. doi: 10.1136/bmj.g2006.
5
Cost-effectiveness of bevacizumab and ranibizumab for newly diagnosed neovascular macular degeneration.
Ophthalmology. 2014 Apr;121(4):936-45. doi: 10.1016/j.ophtha.2013.10.037. Epub 2014 Jan 7.
6
Risk of scar in the comparison of age-related macular degeneration treatments trials.
Ophthalmology. 2014 Mar;121(3):656-66. doi: 10.1016/j.ophtha.2013.10.019. Epub 2013 Dec 4.
7
Comparison of outcomes from a phase 3 study of age-related macular degeneration with a matched, observational cohort.
Ophthalmology. 2014 Mar;121(3):676-81. doi: 10.1016/j.ophtha.2013.09.050. Epub 2013 Nov 28.
8
Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies.
Ophthalmology. 2014 Jan;121(1):193-201. doi: 10.1016/j.ophtha.2013.08.011. Epub 2013 Sep 29.
9
Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials.
Ophthalmology. 2014 Jan;121(1):150-161. doi: 10.1016/j.ophtha.2013.08.015. Epub 2013 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验