UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
Int J Oncol. 2014 Nov;45(5):1959-68. doi: 10.3892/ijo.2014.2625. Epub 2014 Aug 27.
There have been many DNA methylation studies on breast cancer which showed various methylation patterns involving tumour suppressor genes and oncogenes but only a few of those studies link the methylation data with gene expression. More data are required especially from the Asian region and to analyse how the epigenome data correlate with the transcriptome. DNA methylation profiling was carried out on 76 fresh frozen primary breast tumour tissues and 25 adjacent non-cancerous breast tissues using the Illumina Infinium(®) HumanMethylation27 BeadChip. Validation of methylation results was performed on 7 genes using either MS-MLPA or MS-qPCR. Gene expression profiling was done on 15 breast tumours and 5 adjacent non-cancerous breast tissues using the Affymetrix GeneChip(®) Human Gene 1.0 ST array. The overlapping genes between DNA methylation and gene expression datasets were further mapped to the KEGG database to identify the molecular pathways that linked these genes together. Supervised hierarchical cluster analysis revealed 1,389 hypermethylated CpG sites and 22 hypomethylated CpG sites in cancer compared to the normal samples. Gene expression microarray analysis using a fold-change of at least 1.5 and a false discovery rate (FDR) at p>0.05 identified 404 upregulated and 463 downregulated genes in cancer samples. Integration of both datasets identified 51 genes with hypermethylation with low expression (negative association) and 13 genes with hypermethylation with high expression (positive association). Most of the overlapping genes belong to the focal adhesion and extracellular matrix-receptor interaction that play important roles in breast carcinogenesis. The present study displayed the value of using multiple datasets in the same set of tissues and how the integrative analysis can create a list of well-focused genes as well as to show the correlation between epigenetic changes and gene expression. These gene signatures can help us understand the epigenetic regulation of gene expression and could be potential targets for therapeutic intervention in the future.
已经有许多关于乳腺癌的 DNA 甲基化研究,这些研究显示了涉及肿瘤抑制基因和癌基因的各种甲基化模式,但只有少数研究将甲基化数据与基因表达联系起来。需要更多的数据,特别是来自亚洲地区的数据,并分析表观基因组数据与转录组的相关性。使用 Illumina Infinium(®)HumanMethylation27 BeadChip 对 76 例新鲜冷冻原发性乳腺癌组织和 25 例相邻非癌性乳腺组织进行了 DNA 甲基化谱分析。使用 MS-MLPA 或 MS-qPCR 对 7 个基因的甲基化结果进行了验证。使用 Affymetrix GeneChip(®)Human Gene 1.0 ST 阵列对 15 例乳腺癌和 5 例相邻非癌性乳腺组织进行了基因表达谱分析。将 DNA 甲基化和基因表达数据集之间的重叠基因进一步映射到 KEGG 数据库,以确定将这些基因联系在一起的分子途径。有监督的层次聚类分析显示,与正常样本相比,癌症组织中有 1389 个高甲基化 CpG 位点和 22 个低甲基化 CpG 位点。使用至少 1.5 倍的 fold-change 和 FDR(p>0.05)的基因表达微阵列分析,在癌症样本中鉴定出 404 个上调和 463 个下调基因。整合两个数据集,鉴定出 51 个低表达(负相关)的高甲基化基因和 13 个高表达(正相关)的高甲基化基因。大多数重叠基因属于细胞黏附与细胞外基质受体相互作用,在乳腺癌发生中起着重要作用。本研究展示了在同一组组织中使用多个数据集的价值,以及整合分析如何创建一个重点明确的基因列表,并显示表观遗传变化与基因表达之间的相关性。这些基因特征可以帮助我们理解基因表达的表观遗传调控,并可能成为未来治疗干预的潜在靶点。