Suppr超能文献

在人前列腺类器官培养物中鉴定多能管腔祖细胞。

Identification of multipotent luminal progenitor cells in human prostate organoid cultures.

作者信息

Karthaus Wouter R, Iaquinta Phillip J, Drost Jarno, Gracanin Ana, van Boxtel Ruben, Wongvipat John, Dowling Catherine M, Gao Dong, Begthel Harry, Sachs Norman, Vries Robert G J, Cuppen Edwin, Chen Yu, Sawyers Charles L, Clevers Hans C

机构信息

Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, Netherlands.

Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

出版信息

Cell. 2014 Sep 25;159(1):163-175. doi: 10.1016/j.cell.2014.08.017. Epub 2014 Sep 4.

Abstract

The prostate gland consists of basal and luminal cells arranged as pseudostratified epithelium. In tissue recombination models, only basal cells reconstitute a complete prostate gland, yet murine lineage-tracing experiments show that luminal cells generate basal cells. It has remained challenging to address the molecular details of these transitions and whether they apply to humans, due to the lack of culture conditions that recapitulate prostate gland architecture. Here, we describe a 3D culture system that supports long-term expansion of primary mouse and human prostate organoids, composed of fully differentiated CK5+ basal and CK8+ luminal cells. Organoids are genetically stable, reconstitute prostate glands in recombination assays, and can be experimentally manipulated. Single human luminal and basal cells give rise to organoids, yet luminal-cell-derived organoids more closely resemble prostate glands. These data support a luminal multilineage progenitor cell model for prostate tissue and establish a robust, scalable system for mechanistic studies.

摘要

前列腺由排列成假复层上皮的基底细胞和管腔细胞组成。在组织重组模型中,只有基底细胞能重建完整的前列腺,但小鼠谱系追踪实验表明,管腔细胞能产生基底细胞。由于缺乏能够重现前列腺结构的培养条件,要阐明这些转变的分子细节以及它们是否适用于人类仍然具有挑战性。在此,我们描述了一种三维培养系统,该系统支持原代小鼠和人类前列腺类器官的长期扩增,这些类器官由完全分化的CK5+基底细胞和CK8+管腔细胞组成。类器官基因稳定,在重组试验中能重建前列腺,并且可以进行实验操作。单个的人类管腔细胞和基底细胞能产生类器官,但管腔细胞来源的类器官更类似于前列腺。这些数据支持前列腺组织的管腔多谱系祖细胞模型,并建立了一个强大的、可扩展的用于机制研究的系统。

相似文献

1
Identification of multipotent luminal progenitor cells in human prostate organoid cultures.
Cell. 2014 Sep 25;159(1):163-175. doi: 10.1016/j.cell.2014.08.017. Epub 2014 Sep 4.
2
Single luminal epithelial progenitors can generate prostate organoids in culture.
Nat Cell Biol. 2014 Oct;16(10):951-61, 1-4. doi: 10.1038/ncb3047. Epub 2014 Sep 21.
5
Organoid culture systems for prostate epithelial and cancer tissue.
Nat Protoc. 2016 Feb;11(2):347-58. doi: 10.1038/nprot.2016.006. Epub 2016 Jan 21.
6
Cell differentiation lineage in the prostate.
Differentiation. 2001 Oct;68(4-5):270-9. doi: 10.1046/j.1432-0436.2001.680414.x.
8
Derivation of a robust mouse mammary organoid system for studying tissue dynamics.
Development. 2017 Mar 15;144(6):1065-1071. doi: 10.1242/dev.145045. Epub 2016 Dec 19.

引用本文的文献

1
3
EZH2-TTP-mTORC1 Axis Drives Phenotypic Plasticity and Therapeutic Vulnerability in Lethal Prostate Cancer.
bioRxiv. 2025 Aug 11:2025.08.07.669104. doi: 10.1101/2025.08.07.669104.
4
The RNA helicase DDX17 enhances androgen receptor stability by interacting with the E3 ubiquitin ligase SPOP in prostate cancer.
Transl Androl Urol. 2025 Jul 30;14(7):1978-1989. doi: 10.21037/tau-2025-167. Epub 2025 Jul 28.
5
Cancer patient-derived organoids: Novel models for the study of natural products.
Int J Biol Sci. 2025 Jul 11;21(10):4485-4503. doi: 10.7150/ijbs.114373. eCollection 2025.
6
Harnessing organoid technology in urological cancer: advances and applications in urinary system tumors.
World J Surg Oncol. 2025 Jul 22;23(1):295. doi: 10.1186/s12957-025-03948-2.
7
Harnessing organoid technology to model autoimmune pathways in rheumatological and inflammatory disorders.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Jul 15. doi: 10.1007/s00210-025-04387-2.
8
Coculture of tumor organoids with pathogenic microorganisms: a novel system to mimic pathogenic infection.
Front Cell Infect Microbiol. 2025 Jun 30;15:1601688. doi: 10.3389/fcimb.2025.1601688. eCollection 2025.
9
Endocrine cancer organoids in basic and translational medical research.
Sci China Life Sci. 2025 Jun 5. doi: 10.1007/s11427-024-2888-8.

本文引用的文献

1
Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients.
Cell Stem Cell. 2013 Dec 5;13(6):653-8. doi: 10.1016/j.stem.2013.11.002.
2
Lgr4 is a key regulator of prostate development and prostate stem cell differentiation.
Stem Cells. 2013 Nov;31(11):2492-505. doi: 10.1002/stem.1484.
5
In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration.
Nature. 2013 Feb 14;494(7436):247-50. doi: 10.1038/nature11826. Epub 2013 Jan 27.
6
β-catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma.
PLoS Genet. 2013;9(1):e1003180. doi: 10.1371/journal.pgen.1003180. Epub 2013 Jan 3.
7
COUP-TFII inhibits TGF-β-induced growth barrier to promote prostate tumorigenesis.
Nature. 2013 Jan 10;493(7431):236-40. doi: 10.1038/nature11674. Epub 2012 Nov 28.
8
Primary culture and propagation of human prostate epithelial cells.
Methods Mol Biol. 2013;945:365-82. doi: 10.1007/978-1-62703-125-7_22.
9
Multipotent and unipotent progenitors contribute to prostate postnatal development.
Nat Cell Biol. 2012 Nov;14(11):1131-8. doi: 10.1038/ncb2600. Epub 2012 Oct 14.
10
The mutational landscape of lethal castration-resistant prostate cancer.
Nature. 2012 Jul 12;487(7406):239-43. doi: 10.1038/nature11125.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验