U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States.
Environ Sci Technol. 2014 Nov 4;48(21):12750-9. doi: 10.1021/es502513w. Epub 2014 Oct 21.
United States Environmental Protection Agency (USEPA) researchers are developing a strategy for high-throughput (HT) exposure-based prioritization of chemicals under the ExpoCast program. These novel modeling approaches for evaluating chemicals based on their potential for biologically relevant human exposures will inform toxicity testing and prioritization for chemical risk assessment. Based on probabilistic methods and algorithms developed for The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals (SHEDS-MM), a new mechanistic modeling approach has been developed to accommodate high-throughput (HT) assessment of exposure potential. In this SHEDS-HT model, the residential and dietary modules of SHEDS-MM have been operationally modified to reduce the user burden, input data demands, and run times of the higher-tier model, while maintaining critical features and inputs that influence exposure. The model has been implemented in R; the modeling framework links chemicals to consumer product categories or food groups (and thus exposure scenarios) to predict HT exposures and intake doses. Initially, SHEDS-HT has been applied to 2507 organic chemicals associated with consumer products and agricultural pesticides. These evaluations employ data from recent USEPA efforts to characterize usage (prevalence, frequency, and magnitude), chemical composition, and exposure scenarios for a wide range of consumer products. In modeling indirect exposures from near-field sources, SHEDS-HT employs a fugacity-based module to estimate concentrations in indoor environmental media. The concentration estimates, along with relevant exposure factors and human activity data, are then used by the model to rapidly generate probabilistic population distributions of near-field indirect exposures via dermal, nondietary ingestion, and inhalation pathways. Pathway-specific estimates of near-field direct exposures from consumer products are also modeled. Population dietary exposures for a variety of chemicals found in foods are combined with the corresponding chemical-specific near-field exposure predictions to produce aggregate population exposure estimates. The estimated intake dose rates (mg/kg/day) for the 2507 chemical case-study spanned 13 orders of magnitude. SHEDS-HT successfully reproduced the pathway-specific exposure results of the higher-tier SHEDS-MM for a case-study pesticide and produced median intake doses significantly correlated (p<0.0001, R2=0.39) with medians inferred using biomonitoring data for 39 chemicals from the National Health and Nutrition Examination Survey (NHANES). Based on the favorable performance of SHEDS-HT with respect to these initial evaluations, we believe this new tool will be useful for HT prediction of chemical exposure potential.
美国环保署 (USEPA) 的研究人员正在 ExpoCast 计划下制定一种基于高通量 (HT) 的暴露优先排序策略,用于评估化学品。这些基于潜在生物相关人类暴露的新型化学物质评估模型方法将为毒性测试和化学风险评估的优先级排序提供信息。基于为多途径、多媒体化学物质的随机人体暴露和剂量模拟模型 (SHEDS-MM) 开发的概率方法和算法,开发了一种新的机制模型方法,以适应高通量 (HT) 暴露评估。在这个 SHEDS-HT 模型中,SHEDS-MM 的住宅和饮食模块已经进行了操作修改,以减少用户负担、输入数据需求和较高层次模型的运行时间,同时保持影响暴露的关键特征和输入。该模型已在 R 中实现;该建模框架将化学品与消费品类别或食物组(以及因此的暴露情景)联系起来,以预测 HT 暴露和摄入量。最初,SHEDS-HT 已应用于 2507 种与消费品和农业农药相关的有机化学品。这些评估采用了美国环保署最近的努力数据,用于描述各种消费品的使用情况(流行率、频率和幅度)、化学成分和暴露情景。在模拟近场源的间接暴露时,SHEDS-HT 使用基于逸度的模块来估计室内环境介质中的浓度。然后,模型使用浓度估算值以及相关的暴露因素和人类活动数据,通过皮肤、非饮食摄入和吸入途径快速生成近场间接暴露的概率人口分布。还对消费品的近场直接暴露进行了特定途径的建模。对食品中发现的各种化学品的人群饮食暴露进行了组合,同时对相应的化学特定近场暴露预测进行了组合,以产生总体人群暴露估计。2507 种化学案例研究的估计摄入量速率(mg/kg/天)跨越了 13 个数量级。SHEDS-HT 成功复制了更高层次的 SHEDS-MM 的特定途径暴露结果对于一个案例研究农药,并产生了中位摄入量剂量与使用生物监测数据推断的中位数显著相关(p<0.0001,R2=0.39),用于来自国家健康和营养检查调查(NHANES)的 39 种化学物质。基于 SHEDS-HT 在这些初始评估中的良好表现,我们相信这个新工具将有助于化学暴露潜力的高通量预测。