Suppr超能文献

亚硝酸盐与气道上皮细胞相关联,可调节细菌对抗生素的敏感性及生物膜形成。

Nitrite modulates bacterial antibiotic susceptibility and biofilm formation in association with airway epithelial cells.

作者信息

Zemke Anna C, Shiva Sruti, Burns Jane L, Moskowitz Samuel M, Pilewski Joseph M, Gladwin Mark T, Bomberger Jennifer M

机构信息

Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.

Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA 15219, USA.

出版信息

Free Radic Biol Med. 2014 Dec;77:307-16. doi: 10.1016/j.freeradbiomed.2014.08.011. Epub 2014 Sep 16.

Abstract

Pseudomonas aeruginosa is the major pathogenic bacteria in cystic fibrosis and other forms of bronchiectasis. Growth in antibiotic-resistant biofilms contributes to the virulence of this organism. Sodium nitrite has antimicrobial properties and has been tolerated as a nebulized compound at high concentrations in human subjects with pulmonary hypertension; however, its effects have not been evaluated on biotic biofilms or in combination with other clinically useful antibiotics. We grew P. aeruginosa on the apical surface of primary human airway epithelial cells to test the efficacy of sodium nitrite against biotic biofilms. Nitrite alone prevented 99% of biofilm growth. We then identified significant cooperative interactions between nitrite and polymyxins. For P. aeruginosa growing on primary CF airway cells, combining nitrite and colistimethate resulted in an additional log of bacterial inhibition compared to treating with either agent alone. Nitrite and colistimethate additively inhibited oxygen consumption by P. aeruginosa. Surprisingly, whereas the antimicrobial effects of nitrite in planktonic, aerated cultures are nitric oxide (NO) dependent, antimicrobial effects under other growth conditions are not. The inhibitory effect of nitrite on bacterial oxygen consumption and biofilm growth did not require NO as an intermediate as chemically scavenging NO did not block growth inhibition. These data suggest an NO-radical independent nitrosative or oxidative inhibition of respiration. The combination of nebulized sodium nitrite and colistimethate may provide a novel therapy for chronic P. aeruginosa airway infections, because sodium nitrite, unlike other antibiotic respiratory chain "poisons," can be safely nebulized at high concentration in humans.

摘要

铜绿假单胞菌是囊性纤维化和其他形式支气管扩张症中的主要病原菌。在抗生素耐药生物膜中的生长有助于该病原体的毒力。亚硝酸钠具有抗菌特性,在患有肺动脉高压的人类受试者中,已被耐受作为高浓度雾化化合物;然而,其对生物性生物膜或与其他临床有用抗生素联合使用的效果尚未得到评估。我们在原代人气道上皮细胞的顶端表面培养铜绿假单胞菌,以测试亚硝酸钠对生物性生物膜的疗效。单独使用亚硝酸盐可阻止99%的生物膜生长。然后我们确定了亚硝酸盐与多粘菌素之间存在显著的协同相互作用。对于在原发性囊性纤维化气道细胞上生长的铜绿假单胞菌,与单独使用任何一种药物相比,联合使用亚硝酸盐和多粘菌素甲磺酸钠可使细菌抑制作用增加一个对数级。亚硝酸盐和多粘菌素甲磺酸钠相加抑制铜绿假单胞菌的氧气消耗。令人惊讶的是,虽然亚硝酸盐在浮游、通气培养中的抗菌作用依赖于一氧化氮(NO),但在其他生长条件下的抗菌作用并非如此。亚硝酸盐对细菌氧气消耗和生物膜生长的抑制作用不需要NO作为中间产物,因为化学清除NO并不能阻止生长抑制。这些数据表明存在一种不依赖NO自由基的亚硝化或氧化呼吸抑制作用。雾化亚硝酸钠和多粘菌素甲磺酸钠的联合使用可能为慢性铜绿假单胞菌气道感染提供一种新的治疗方法,因为与其他抗生素呼吸链“毒物”不同,亚硝酸钠可以在人体中以高浓度安全雾化。

相似文献

1
Nitrite modulates bacterial antibiotic susceptibility and biofilm formation in association with airway epithelial cells.
Free Radic Biol Med. 2014 Dec;77:307-16. doi: 10.1016/j.freeradbiomed.2014.08.011. Epub 2014 Sep 16.
2
Sodium nitrite blocks the activity of aminoglycosides against Pseudomonas aeruginosa biofilms.
Antimicrob Agents Chemother. 2015;59(6):3329-34. doi: 10.1128/AAC.00546-15. Epub 2015 Mar 23.
3
Dispersal of Epithelium-Associated Pseudomonas aeruginosa Biofilms.
mSphere. 2020 Jul 15;5(4):e00630-20. doi: 10.1128/mSphere.00630-20.
4
Sodium Nitrite Inhibits Killing of Pseudomonas aeruginosa Biofilms by Ciprofloxacin.
Antimicrob Agents Chemother. 2016 Dec 27;61(1). doi: 10.1128/AAC.00448-16. Print 2017 Jan.
6
Engineered cationic antimicrobial peptide (eCAP) prevents Pseudomonas aeruginosa biofilm growth on airway epithelial cells.
J Antimicrob Chemother. 2016 Aug;71(8):2200-7. doi: 10.1093/jac/dkw143. Epub 2016 May 26.
7
In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells.
Infect Immun. 2008 Apr;76(4):1423-33. doi: 10.1128/IAI.01373-07. Epub 2008 Jan 22.

引用本文的文献

1
Dnr-regulated denitrification in microoxic conditions.
Microbiol Spectr. 2025 Sep 2;13(9):e0068225. doi: 10.1128/spectrum.00682-25. Epub 2025 Aug 7.
2
Recreating chronic respiratory infections using physiologically relevant models.
Eur Respir Rev. 2024 Aug 14;33(173). doi: 10.1183/16000617.0062-2024. Print 2024 Jul.
3
Pseudomonas aeruginosa senses and responds to epithelial potassium flux via Kdp operon to promote biofilm.
PLoS Pathog. 2024 May 31;20(5):e1011453. doi: 10.1371/journal.ppat.1011453. eCollection 2024 May.
5
Interferon signaling drives epithelial metabolic reprogramming to promote secondary bacterial infection.
PLoS Pathog. 2023 Nov 8;19(11):e1011719. doi: 10.1371/journal.ppat.1011719. eCollection 2023 Nov.
6
Bacterial respiratory inhibition triggers dispersal of biofilms.
Appl Environ Microbiol. 2023 Oct 31;89(10):e0110123. doi: 10.1128/aem.01101-23. Epub 2023 Sep 20.
7
ESKAPEE pathogens newly released from biofilm residence by a targeted monoclonal are sensitized to killing by traditional antibiotics.
Front Microbiol. 2023 Jul 26;14:1202215. doi: 10.3389/fmicb.2023.1202215. eCollection 2023.
8
strains exhibit heterogenous tolerance to direct cold atmospheric plasma therapy.
Biofilm. 2023 Apr 15;5:100123. doi: 10.1016/j.bioflm.2023.100123. eCollection 2023 Dec.
9
Anti- Vaccines and Therapies: An Assessment of Clinical Trials.
Microorganisms. 2023 Mar 31;11(4):916. doi: 10.3390/microorganisms11040916.
10
Genomic characterization of lytic bacteriophages targeting genetically diverse clinical isolates.
iScience. 2022 May 10;25(6):104372. doi: 10.1016/j.isci.2022.104372. eCollection 2022 Jun 17.

本文引用的文献

1
Catalase (KatA) plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa.
PLoS One. 2014 Mar 24;9(3):e91813. doi: 10.1371/journal.pone.0091813. eCollection 2014.
2
Inhaled colistin in patients with bronchiectasis and chronic Pseudomonas aeruginosa infection.
Am J Respir Crit Care Med. 2014 Apr 15;189(8):975-82. doi: 10.1164/rccm.201312-2208OC.
4
Nitrous oxide production in sputum from cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection.
PLoS One. 2014 Jan 17;9(1):e84353. doi: 10.1371/journal.pone.0084353. eCollection 2014.
5
Acidified nitrite: a host defence against colonization with C. difficile spores?
J Hosp Infect. 2014 Feb;86(2):155-7. doi: 10.1016/j.jhin.2013.12.003. Epub 2013 Dec 21.
6
Mechanisms of nitrite bioactivation.
Nitric Oxide. 2014 Apr 30;38:58-68. doi: 10.1016/j.niox.2013.11.002. Epub 2013 Dec 6.
7
Effect of apical hyperosmotic sodium challenge and amiloride on sodium transport in human bronchial epithelial cells from cystic fibrosis donors.
Am J Physiol Cell Physiol. 2013 Dec 1;305(11):C1114-22. doi: 10.1152/ajpcell.00166.2013. Epub 2013 Aug 28.
9
Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I.
Nat Med. 2013 Jun;19(6):753-9. doi: 10.1038/nm.3212. Epub 2013 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验