Suppr超能文献

敲除肠道上皮胰岛素受体可减轻高脂肪饮食诱导的胆固醇升高以及干细胞、肠内分泌细胞和潘氏细胞 mRNA 的升高。

Deletion of intestinal epithelial insulin receptor attenuates high-fat diet-induced elevations in cholesterol and stem, enteroendocrine, and Paneth cell mRNAs.

机构信息

Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and.

Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

出版信息

Am J Physiol Gastrointest Liver Physiol. 2015 Jan 15;308(2):G100-11. doi: 10.1152/ajpgi.00287.2014. Epub 2014 Nov 13.

Abstract

The insulin receptor (IR) regulates nutrient uptake and utilization in multiple organs, but its role in the intestinal epithelium is not defined. This study developed a mouse model with villin-Cre (VC) recombinase-mediated intestinal epithelial cell (IEC)-specific IR deletion (VC-IR(Δ/Δ)) and littermate controls with floxed, but intact, IR (IR(fl/fl)) to define in vivo roles of IEC-IR in mice fed chow or high-fat diet (HFD). We hypothesized that loss of IEC-IR would alter intestinal growth, biomarkers of intestinal epithelial stem cells (IESC) or other lineages, body weight, adiposity, and glucose or lipid handling. In lean, chow-fed mice, IEC-IR deletion did not affect body or fat mass, plasma glucose, or IEC proliferation. In chow-fed VC-IR(Δ/Δ) mice, mRNA levels of the Paneth cell marker lysozyme (Lyz) were decreased, but markers of other differentiated lineages were unchanged. During HFD-induced obesity, IR(fl/fl) and VC-IR(Δ/Δ) mice exhibited similar increases in body and fat mass, plasma insulin, mRNAs encoding several lipid-handling proteins, a decrease in Paneth cell number, and impaired glucose tolerance. In IR(fl/fl) mice, HFD-induced obesity increased circulating cholesterol; numbers of chromogranin A (CHGA)-positive enteroendocrine cells (EEC); and mRNAs encoding Chga, glucose-dependent insulinotrophic peptide (Gip), glucagon (Gcg), Lyz, IESC biomarkers, and the enterocyte cholesterol transporter Scarb1. All these effects were attenuated or lost in VC-IR(Δ/Δ) mice. These results demonstrate that IEC-IR is not required for normal growth of the intestinal epithelium in lean adult mice. However, our findings provide novel evidence that, during HFD-induced obesity, IEC-IR contributes to increases in EEC, plasma cholesterol, and increased expression of Scarb1 or IESC-, EEC-, and Paneth cell-derived mRNAs.

摘要

胰岛素受体(IR)调节多种器官的营养摄取和利用,但在肠上皮细胞中的作用尚未明确。本研究通过使用绒毛蛋白(Villin)-Cre(VC)重组酶介导的肠上皮细胞(IEC)特异性 IR 缺失(VC-IR(Δ/Δ))构建了小鼠模型,并利用同窝出生但保留完整 IR 的 floxed 小鼠(IR(fl/fl))作为对照,以明确喂食标准饮食或高脂肪饮食(HFD)时 IEC-IR 在小鼠体内的作用。我们假设 IEC-IR 的缺失会改变肠道生长、肠上皮干细胞(IESC)或其他谱系的生物标志物、体重、体脂含量以及葡萄糖或脂质处理。在 lean、chow 喂养的小鼠中,IEC-IR 的缺失并不影响体重或脂肪量、血浆葡萄糖或 IEC 增殖。在 chow 喂养的 VC-IR(Δ/Δ)小鼠中,潘氏细胞标志物溶菌酶(Lyz)的 mRNA 水平降低,但其他分化谱系的标志物不变。在 HFD 诱导的肥胖期间,IR(fl/fl)和 VC-IR(Δ/Δ)小鼠的体重和脂肪量、血浆胰岛素、编码几种脂质处理蛋白的 mRNA 水平均增加,潘氏细胞数量减少,葡萄糖耐量受损。在 IR(fl/fl)小鼠中,HFD 诱导的肥胖增加了循环胆固醇;嗜铬粒蛋白 A(CHGA)阳性肠内分泌细胞(EEC)的数量;以及编码 Chga、葡萄糖依赖性胰岛素促分泌肽(Gip)、胰高血糖素(Gcg)、Lyz、IESC 生物标志物和肠上皮细胞胆固醇转运蛋白 Scarb1 的 mRNA。在 VC-IR(Δ/Δ)小鼠中,所有这些作用均减弱或消失。这些结果表明,在 lean 成年小鼠中,IEC-IR 对于肠上皮细胞的正常生长并非必需。然而,我们的研究结果提供了新的证据,即在 HFD 诱导的肥胖期间,IEC-IR 有助于增加 EEC、血浆胆固醇以及 Scarb1 或 IESC、EEC 和潘氏细胞衍生的 mRNA 的表达增加。

相似文献

1
Deletion of intestinal epithelial insulin receptor attenuates high-fat diet-induced elevations in cholesterol and stem, enteroendocrine, and Paneth cell mRNAs.
Am J Physiol Gastrointest Liver Physiol. 2015 Jan 15;308(2):G100-11. doi: 10.1152/ajpgi.00287.2014. Epub 2014 Nov 13.
2
Inhibiting RHOA Signaling in Mice Increases Glucose Tolerance and Numbers of Enteroendocrine and Other Secretory Cells in the Intestine.
Gastroenterology. 2018 Oct;155(4):1164-1176.e2. doi: 10.1053/j.gastro.2018.06.039. Epub 2018 Jun 20.
4
Pdx1 inactivation restricted to the intestinal epithelium in mice alters duodenal gene expression in enterocytes and enteroendocrine cells.
Am J Physiol Gastrointest Liver Physiol. 2009 Dec;297(6):G1126-37. doi: 10.1152/ajpgi.90586.2008. Epub 2009 Oct 1.
5
Obesity and intestinal epithelial deletion of the insulin receptor, but not the IGF 1 receptor, affect radiation-induced apoptosis in colon.
Am J Physiol Gastrointest Liver Physiol. 2015 Oct 1;309(7):G578-89. doi: 10.1152/ajpgi.00189.2015. Epub 2015 Aug 6.
6
mTOR disruption causes intestinal epithelial cell defects and intestinal atrophy postinjury in mice.
FASEB J. 2016 Mar;30(3):1263-75. doi: 10.1096/fj.15-278606. Epub 2015 Nov 30.
7
Regulation of Glucose Uptake and Enteroendocrine Function by the Intestinal Epithelial Insulin Receptor.
Diabetes. 2017 Apr;66(4):886-896. doi: 10.2337/db15-1349. Epub 2017 Jan 17.
9

引用本文的文献

1
Disentangling the impact of obesity, diet, host factors, and microbiota on small intestinal antimicrobial peptide expression.
Gut Microbes. 2025 Dec;17(1):2536095. doi: 10.1080/19490976.2025.2536095. Epub 2025 Aug 4.
3
Pancreastatin Inhibition Alters the Colonic Epithelial Cells Profile in a Sex-Dependent Manner.
Int J Mol Sci. 2024 Nov 27;25(23):12757. doi: 10.3390/ijms252312757.
4
Insulin receptor orchestrates kidney antibacterial defenses.
Proc Natl Acad Sci U S A. 2024 Jul 16;121(29):e2400666121. doi: 10.1073/pnas.2400666121. Epub 2024 Jul 8.
5
Insulin receptor signaling engages bladder urothelial defenses that limit urinary tract infection.
Cell Rep. 2024 Apr 23;43(4):114007. doi: 10.1016/j.celrep.2024.114007. Epub 2024 Mar 21.
7
Intestinal α-Defensins Play a Minor Role in Modulating the Small Intestinal Microbiota Composition as Compared to Diet.
Microbiol Spectr. 2023 Jun 15;11(3):e0056723. doi: 10.1128/spectrum.00567-23. Epub 2023 Apr 11.
8
Multifaceted involvements of Paneth cells in various diseases within intestine and systemically.
Front Immunol. 2023 Mar 13;14:1115552. doi: 10.3389/fimmu.2023.1115552. eCollection 2023.
9
Expression of a constitutively active insulin receptor in Drosulfakinin (Dsk) neurons regulates metabolism and sleep in .
Biochem Biophys Rep. 2022 May 14;30:101280. doi: 10.1016/j.bbrep.2022.101280. eCollection 2022 Jul.
10
Secondary Bile Acids and Tumorigenesis in Colorectal Cancer.
Front Oncol. 2022 Apr 28;12:813745. doi: 10.3389/fonc.2022.813745. eCollection 2022.

本文引用的文献

1
Reduced insulin-like growth factor I receptor and altered insulin receptor isoform mRNAs in normal mucosa predict colorectal adenoma risk.
Cancer Epidemiol Biomarkers Prev. 2014 Oct;23(10):2093-100. doi: 10.1158/1055-9965.EPI-14-0177. Epub 2014 Jul 13.
3
Impact of high-fat feeding on basic helix-loop-helix transcription factors controlling enteroendocrine cell differentiation.
Int J Obes (Lond). 2014 Nov;38(11):1440-8. doi: 10.1038/ijo.2014.20. Epub 2014 Jan 31.
4
Intestinal lipid handling: evidence and implication of insulin signaling abnormalities in human obese subjects.
Arterioscler Thromb Vasc Biol. 2014 Mar;34(3):644-53. doi: 10.1161/ATVBAHA.113.302993. Epub 2014 Jan 9.
5
Mechanisms of obesity-induced gastrointestinal neoplasia.
Gastroenterology. 2014 Feb;146(2):357-373. doi: 10.1053/j.gastro.2013.11.051. Epub 2013 Dec 6.
8
Gut hormones as therapeutic agents in treatment of diabetes and obesity.
Curr Opin Pharmacol. 2013 Dec;13(6):996-1001. doi: 10.1016/j.coph.2013.09.005. Epub 2013 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验