Suppr超能文献

评估用于非辅助性连续血糖监测的传感器准确性。

Assessing sensor accuracy for non-adjunct use of continuous glucose monitoring.

作者信息

Kovatchev Boris P, Patek Stephen D, Ortiz Edward Andrew, Breton Marc D

机构信息

1 University of Virginia Center for Diabetes Technology , Charlottesville, Virginia.

出版信息

Diabetes Technol Ther. 2015 Mar;17(3):177-86. doi: 10.1089/dia.2014.0272. Epub 2014 Dec 1.

Abstract

BACKGROUND

The level of continuous glucose monitoring (CGM) accuracy needed for insulin dosing using sensor values (i.e., the level of accuracy permitting non-adjunct CGM use) is a topic of ongoing debate. Assessment of this level in clinical experiments is virtually impossible because the magnitude of CGM errors cannot be manipulated and related prospectively to clinical outcomes.

MATERIALS AND METHODS

A combination of archival data (parallel CGM, insulin pump, self-monitoring of blood glucose [SMBG] records, and meals for 56 pump users with type 1 diabetes) and in silico experiments was used to "replay" real-life treatment scenarios and relate sensor error to glycemic outcomes. Nominal blood glucose (BG) traces were extracted using a mathematical model, yielding 2,082 BG segments each initiated by insulin bolus and confirmed by SMBG. These segments were replayed at seven sensor accuracy levels (mean absolute relative differences [MARDs] of 3-22%) testing six scenarios: insulin dosing using sensor values, threshold, and predictive alarms, each without or with considering CGM trend arrows.

RESULTS

In all six scenarios, the occurrence of hypoglycemia (frequency of BG levels ≤50 mg/dL and BG levels ≤39 mg/dL) increased with sensor error, displaying an abrupt slope change at MARD =10%. Similarly, hyperglycemia (frequency of BG levels ≥250 mg/dL and BG levels ≥400 mg/dL) increased and displayed an abrupt slope change at MARD=10%. When added to insulin dosing decisions, information from CGM trend arrows, threshold, and predictive alarms resulted in improvement in average glycemia by 1.86, 8.17, and 8.88 mg/dL, respectively.

CONCLUSIONS

Using CGM for insulin dosing decisions is feasible below a certain level of sensor error, estimated in silico at MARD=10%. In our experiments, further accuracy improvement did not contribute substantively to better glycemic outcomes.

摘要

背景

使用传感器值进行胰岛素给药所需的连续血糖监测(CGM)准确性水平(即允许非辅助使用CGM的准确性水平)是一个仍在争论的话题。在临床试验中评估这一水平几乎是不可能的,因为CGM误差的大小无法控制,也无法前瞻性地与临床结果相关联。

材料与方法

结合存档数据(56名1型糖尿病胰岛素泵使用者的并行CGM、胰岛素泵、自我血糖监测[SMBG]记录和饮食数据)和计算机模拟实验,“重现”现实生活中的治疗场景,并将传感器误差与血糖结果相关联。使用数学模型提取名义血糖(BG)轨迹,得到2082个BG片段,每个片段均由胰岛素推注启动并经SMBG确认。这些片段在七个传感器准确性水平(平均绝对相对差异[MARD]为3%-22%)下进行重现,测试六种场景:使用传感器值进行胰岛素给药、阈值和预测警报,每种场景均不考虑或考虑CGM趋势箭头。

结果

在所有六种场景中,低血糖(BG水平≤50mg/dL和BG水平≤39mg/dL的频率)的发生率随传感器误差增加,在MARD = 10%时显示出斜率突变。同样,高血糖(BG水平≥250mg/dL和BG水平≥400mg/dL的频率)增加,并在MARD = 10%时显示出斜率突变。当将CGM趋势箭头、阈值和预测警报的信息添加到胰岛素给药决策中时,平均血糖分别改善了1.86、8.17和8.88mg/dL。

结论

在计算机模拟中估计,在传感器误差低于MARD = 10%的特定水平时,使用CGM进行胰岛素给药决策是可行的。在我们的实验中,进一步提高准确性对改善血糖结果没有实质性贡献。

相似文献

1
Assessing sensor accuracy for non-adjunct use of continuous glucose monitoring.
Diabetes Technol Ther. 2015 Mar;17(3):177-86. doi: 10.1089/dia.2014.0272. Epub 2014 Dec 1.
2
Rate-of-Change Dependence of the Performance of Two CGM Systems During Induced Glucose Swings.
J Diabetes Sci Technol. 2015 Jul;9(4):801-7. doi: 10.1177/1932296815578716. Epub 2015 Apr 7.
3
Continuous Glucose Monitoring in Critically Ill Patients With COVID-19: Results of an Emergent Pilot Study.
J Diabetes Sci Technol. 2020 Nov;14(6):1065-1073. doi: 10.1177/1932296820964264. Epub 2020 Oct 16.
4
Reliability of Inpatient CGM: Comparison to Standard of Care.
J Diabetes Sci Technol. 2023 Mar;17(2):329-335. doi: 10.1177/19322968211062168. Epub 2021 Dec 15.
6
Accuracy of a new real-time continuous glucose monitoring algorithm.
J Diabetes Sci Technol. 2010 Jan 1;4(1):111-8. doi: 10.1177/193229681000400114.
8
Hypoglycemic Accuracy and Improved Low Glucose Alerts of the Latest Dexcom G4 Platinum Continuous Glucose Monitoring System.
Diabetes Technol Ther. 2015 Aug;17(8):548-54. doi: 10.1089/dia.2014.0415. Epub 2015 May 11.
9
Extensive Assessment of Blood Glucose Monitoring During Postprandial Period and Its Impact on Closed-Loop Performance.
J Diabetes Sci Technol. 2017 Nov;11(6):1089-1095. doi: 10.1177/1932296817714272. Epub 2017 Jun 21.
10
Improved Accuracy of Continuous Glucose Monitoring Systems in Pediatric Patients with Diabetes Mellitus: Results from Two Studies.
Diabetes Technol Ther. 2016 Feb;18 Suppl 2(Suppl 2):S223-33. doi: 10.1089/dia.2015.0380.

引用本文的文献

1
Calibrating Dexcom G7 improves its performance in the context of repetitive recreational scuba diving in people with type 1 diabetes.
BMJ Open Sport Exerc Med. 2025 Sep 1;11(3):e002809. doi: 10.1136/bmjsem-2025-002809. eCollection 2025.
3
Comparative Performance Analysis of Manual and Updated Optional Calibration Algorithms for the CareSens Air CGM System.
J Diabetes Sci Technol. 2025 Jul 3:19322968251351318. doi: 10.1177/19322968251351318.
4
Metabolic Models, in Silico Trials, and Algorithms.
J Diabetes Sci Technol. 2025 Jul;19(4):895-907. doi: 10.1177/19322968251338300. Epub 2025 Jul 1.
5
Clinical evaluation of a polarization-based optical noninvasive glucose sensing system.
Sci Rep. 2025 Mar 14;15(1):8877. doi: 10.1038/s41598-025-92515-6.
6
Hypoglycemia Prediction in Type 1 Diabetes With Electrocardiography Beat Ensembles.
J Diabetes Sci Technol. 2025 Feb 25:19322968251319347. doi: 10.1177/19322968251319347.
7
Performance of Three Continuous Glucose Monitoring Systems in Adults With Type 1 Diabetes.
J Diabetes Sci Technol. 2025 Feb 4:19322968251315459. doi: 10.1177/19322968251315459.
9
Evaluating the precision and reliability of real-time continuous glucose monitoring systems in ambulatory settings: a systematic review.
Ther Adv Endocrinol Metab. 2024 Dec 11;15:20420188241304459. doi: 10.1177/20420188241304459. eCollection 2024.
10
A new glucose monitoring system for the intermittent monitoring of interstitial glucose values in patients with diabetes mellitus.
J Diabetes Metab Disord. 2024 Sep 9;23(2):2201-2205. doi: 10.1007/s40200-024-01488-2. eCollection 2024 Dec.

本文引用的文献

1
Computing the surveillance error grid analysis: procedure and examples.
J Diabetes Sci Technol. 2014 Jul;8(4):673-84. doi: 10.1177/1932296814539590. Epub 2014 Jun 13.
2
The surveillance error grid.
J Diabetes Sci Technol. 2014 Jul;8(4):658-72. doi: 10.1177/1932296814539589. Epub 2014 Jun 13.
4
Safety of outpatient closed-loop control: first randomized crossover trials of a wearable artificial pancreas.
Diabetes Care. 2014 Jul;37(7):1789-96. doi: 10.2337/dc13-2076. Epub 2014 Jun 14.
5
A comparative effectiveness analysis of three continuous glucose monitors: the Navigator, G4 Platinum, and Enlite.
J Diabetes Sci Technol. 2014 Jul;8(4):699-708. doi: 10.1177/1932296814532203. Epub 2014 Apr 21.
6
Accuracy and acceptability of the 6-day Enlite continuous subcutaneous glucose sensor.
Diabetes Technol Ther. 2014 May;16(5):277-83. doi: 10.1089/dia.2013.0222. Epub 2014 Apr 7.
7
Closed loop developments to improve glucose control at home.
Diabetes Res Clin Pract. 2013 Nov;102(2):79-85. doi: 10.1016/j.diabres.2013.09.009. Epub 2013 Sep 28.
8
Time lag of glucose from intravascular to interstitial compartment in humans.
Diabetes. 2013 Dec;62(12):4083-7. doi: 10.2337/db13-1132. Epub 2013 Sep 5.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验