Suppr超能文献

一种固有型HIV潜伏程序。

A hardwired HIV latency program.

作者信息

Razooky Brandon S, Pai Anand, Aull Katherine, Rouzine Igor M, Weinberger Leor S

机构信息

The Gladstone Institutes (Virology and Immunology), San Francisco, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158; Biophysics Graduate Group, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158.

The Gladstone Institutes (Virology and Immunology), San Francisco, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158; Department of Biochemistry and Biophysics, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158.

出版信息

Cell. 2015 Feb 26;160(5):990-1001. doi: 10.1016/j.cell.2015.02.009.

Abstract

Biological circuits can be controlled by two general schemes: environmental sensing or autonomous programs. For viruses such as HIV, the prevailing hypothesis is that latent infection is controlled by cellular state (i.e., environment), with latency simply an epiphenomenon of infected cells transitioning from an activated to resting state. However, we find that HIV expression persists despite the activated-to-resting cellular transition. Mathematical modeling indicates that HIV's Tat positive-feedback circuitry enables this persistence and strongly controls latency. To overcome the inherent crosstalk between viral circuitry and cellular activation and to directly test this hypothesis, we synthetically decouple viral dependence on cellular environment from viral transcription. These circuits enable control of viral transcription without cellular activation and show that Tat feedback is sufficient to regulate latency independent of cellular activation. Overall, synthetic reconstruction demonstrates that a largely autonomous, viral-encoded program underlies HIV latency—potentially explaining why cell-targeted latency-reversing agents exhibit incomplete penetrance.

摘要

生物回路可通过两种一般方案进行控制

环境感知或自主程序。对于诸如HIV之类的病毒,普遍的假说是潜伏感染受细胞状态(即环境)控制,潜伏期仅仅是受感染细胞从激活状态转变为静止状态的一种附带现象。然而,我们发现尽管细胞从激活状态转变为静止状态,HIV的表达仍持续存在。数学建模表明,HIV的Tat正反馈回路促成了这种持续性并强烈控制潜伏期。为了克服病毒回路与细胞激活之间固有的串扰并直接验证这一假说,我们通过合成方法将病毒对细胞环境的依赖性与病毒转录解耦。这些回路能够在不激活细胞的情况下控制病毒转录,并表明Tat反馈足以独立于细胞激活来调节潜伏期。总体而言,合成重建表明,一种基本上自主的、病毒编码的程序是HIV潜伏期的基础——这可能解释了为什么针对细胞的潜伏期逆转剂表现出不完全的渗透。

相似文献

1
A hardwired HIV latency program.
Cell. 2015 Feb 26;160(5):990-1001. doi: 10.1016/j.cell.2015.02.009.
2
The Tat Inhibitor Didehydro-Cortistatin A Prevents HIV-1 Reactivation from Latency.
mBio. 2015 Jul 7;6(4):e00465. doi: 10.1128/mBio.00465-15.
6
Nonlatching positive feedback enables robust bimodality by decoupling expression noise from the mean.
PLoS Biol. 2017 Oct 18;15(10):e2000841. doi: 10.1371/journal.pbio.2000841. eCollection 2017 Oct.
9
The molecular biology of HIV latency: breaking and restoring the Tat-dependent transcriptional circuit.
Curr Opin HIV AIDS. 2011 Jan;6(1):4-11. doi: 10.1097/COH.0b013e328340ffbb.
10
The Molecular Basis for Human Immunodeficiency Virus Latency.
Annu Rev Virol. 2017 Sep 29;4(1):261-285. doi: 10.1146/annurev-virology-101416-041646. Epub 2017 Jul 17.

引用本文的文献

1
The influence of HIV sense and antisense transcripts on stochastic HIV transcription and reactivation.
Comput Struct Biotechnol J. 2025 Aug 6;27:3528-3546. doi: 10.1016/j.csbj.2025.08.003. eCollection 2025.
2
Mathematical modeling and mechanisms of HIV latency for personalized anti latency therapies.
NPJ Syst Biol Appl. 2025 Jun 12;11(1):64. doi: 10.1038/s41540-025-00538-6.
3
HIV Tat as a latency reversing agent: turning the tables on viral persistence.
Front Immunol. 2025 Apr 11;16:1571151. doi: 10.3389/fimmu.2025.1571151. eCollection 2025.
4
Human chromatin remodelers regulating HIV-1 transcription: a target for small molecule inhibitors.
Epigenetics Chromatin. 2025 Apr 16;18(1):21. doi: 10.1186/s13072-025-00582-w.
5
Liquid-liquid phase separation of LARP7 restrains HIV-1 replication.
EMBO Rep. 2025 Apr;26(8):1935-1956. doi: 10.1038/s44319-025-00421-9. Epub 2025 Mar 20.
6
FBXO45 restricts HIV-1 replication by inducing SQSTM1/p62-mediated autophagic degradation of Tat.
J Virol. 2025 Mar 18;99(3):e0191224. doi: 10.1128/jvi.01912-24. Epub 2025 Feb 12.
7
Variation in HIV-1 Tat activity is a key determinant in the establishment of latent infection.
JCI Insight. 2024 Dec 5;10(2):e184711. doi: 10.1172/jci.insight.184711.
8
Engineered deletions of HIV replicate conditionally to reduce disease in nonhuman primates.
Science. 2024 Aug 9;385(6709):eadn5866. doi: 10.1126/science.adn5866.
9
Integrated Single-cell Multiomic Analysis of HIV Latency Reversal Reveals Novel Regulators of Viral Reactivation.
Genomics Proteomics Bioinformatics. 2024 May 9;22(1). doi: 10.1093/gpbjnl/qzae003.
10
Mitotic deacetylase complex (MiDAC) recognizes the HIV-1 core promoter to control activated viral gene expression.
PLoS Pathog. 2024 May 23;20(5):e1011821. doi: 10.1371/journal.ppat.1011821. eCollection 2024 May.

本文引用的文献

1
An evolutionary role for HIV latency in enhancing viral transmission.
Cell. 2015 Feb 26;160(5):1002-1012. doi: 10.1016/j.cell.2015.02.017.
2
Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys.
Nature. 2014 Aug 7;512(7512):74-7. doi: 10.1038/nature13594. Epub 2014 Jul 20.
3
Screening for noise in gene expression identifies drug synergies.
Science. 2014 Jun 20;344(6190):1392-6. doi: 10.1126/science.1250220. Epub 2014 Jun 5.
4
5
Stochastic fate selection in HIV-infected patients.
Cell. 2013 Oct 24;155(3):497-9. doi: 10.1016/j.cell.2013.09.039.
6
Dual-color HIV reporters trace a population of latently infected cells and enable their purification.
Virology. 2013 Nov;446(1-2):283-92. doi: 10.1016/j.virol.2013.07.037. Epub 2013 Sep 6.
7
Restrictions to HIV-1 replication in resting CD4+ T lymphocytes.
Cell Res. 2013 Jul;23(7):876-85. doi: 10.1038/cr.2013.74. Epub 2013 Jun 4.
8
A doubly fluorescent HIV-1 reporter shows that the majority of integrated HIV-1 is latent shortly after infection.
J Virol. 2013 Apr;87(8):4716-27. doi: 10.1128/JVI.03478-12. Epub 2013 Feb 13.
9
T-cell memory differentiation: insights from transcriptional signatures and epigenetics.
Immunology. 2013 Jul;139(3):277-84. doi: 10.1111/imm.12074.
10
HIV pathogenesis: dynamics and genetics of viral populations and infected cells.
Cold Spring Harb Perspect Med. 2013 Jan 1;3(1):a012526. doi: 10.1101/cshperspect.a012526.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验