Suppr超能文献

在CASD-NMR实验中使用NMR-I-TASSER进行基于核磁共振数据驱动的结构测定。

NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment.

作者信息

Jang Richard, Wang Yan, Xue Zhidong, Zhang Yang

机构信息

School of Software Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.

Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI, 48109-2218, USA.

出版信息

J Biomol NMR. 2015 Aug;62(4):511-25. doi: 10.1007/s10858-015-9914-y. Epub 2015 Mar 4.

Abstract

NMR-I-TASSER, an adaption of the I-TASSER algorithm combining NMR data for protein structure determination, recently joined the second round of the CASD-NMR experiment. Unlike many molecular dynamics-based methods, NMR-I-TASSER takes a molecular replacement-like approach to the problem by first threading the target through the PDB to identify structural templates which are then used for iterative NOE assignments and fragment structure assembly refinements. The employment of multiple templates allows NMR-I-TASSER to sample different topologies while convergence to a single structure is not required. Retroactive and blind tests of the CASD-NMR targets from Rounds 1 and 2 demonstrate that even without using NOE peak lists I-TASSER can generate correct structure topology with 15 of 20 targets having a TM-score above 0.5. With the addition of NOE-based distance restraints, NMR-I-TASSER significantly improved the I-TASSER models with all models having the TM-score above 0.5. The average RMSD was reduced from 5.29 to 2.14 Å in Round 1 and 3.18 to 1.71 Å in Round 2. There is no obvious difference in the modeling results with using raw and refined peak lists, indicating robustness of the pipeline to the NOE assignment errors. Overall, despite the low-resolution modeling the current NMR-I-TASSER pipeline provides a coarse-grained structure folding approach complementary to traditional molecular dynamics simulations, which can produce fast near-native frameworks for atomic-level structural refinement.

摘要

NMR-I-TASSER是I-TASSER算法的一种改编版本,它结合了用于蛋白质结构测定的核磁共振(NMR)数据,最近参加了第二轮蛋白质结构预测技术关键评估(CASD-NMR)实验。与许多基于分子动力学的方法不同,NMR-I-TASSER采用类似分子置换的方法来解决问题,首先将目标序列穿线到蛋白质数据银行(PDB)中以识别结构模板,然后将这些模板用于迭代的核欧沃豪斯效应(NOE)分配和片段结构组装优化。使用多个模板使NMR-I-TASSER能够对不同的拓扑结构进行采样,而无需收敛到单一结构。对第一轮和第二轮CASD-NMR目标的追溯性和盲测表明,即使不使用NOE峰列表,I-TASSER也能生成正确的结构拓扑,20个目标中有15个的TM分数高于0.5。通过添加基于NOE的距离约束,NMR-I-TASSER显著改进了I-TASSER模型,所有模型的TM分数均高于0.5。第一轮的平均均方根偏差(RMSD)从5.29 Å降至2.14 Å,第二轮从3.18 Å降至1.71 Å。使用原始峰列表和优化后的峰列表的建模结果没有明显差异,这表明该流程对NOE分配错误具有鲁棒性。总体而言,尽管是低分辨率建模,当前的NMR-I-TASSER流程提供了一种与传统分子动力学模拟互补的粗粒度结构折叠方法,它可以快速生成接近天然的框架用于原子级结构优化。

相似文献

1
NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment.
J Biomol NMR. 2015 Aug;62(4):511-25. doi: 10.1007/s10858-015-9914-y. Epub 2015 Mar 4.
2
Guiding automated NMR structure determination using a global optimization metric, the NMR DP score.
J Biomol NMR. 2015 Aug;62(4):439-51. doi: 10.1007/s10858-015-9955-2. Epub 2015 Jun 17.
3
Improved reliability, accuracy and quality in automated NMR structure calculation with ARIA.
J Biomol NMR. 2015 Aug;62(4):425-38. doi: 10.1007/s10858-015-9928-5. Epub 2015 Apr 11.
4
Template-based protein structure prediction in CASP11 and retrospect of I-TASSER in the last decade.
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):233-46. doi: 10.1002/prot.24918. Epub 2015 Sep 18.
5
Template-based modeling and free modeling by I-TASSER in CASP7.
Proteins. 2007;69 Suppl 8:108-17. doi: 10.1002/prot.21702.
6
TASSER-based refinement of NMR structures.
Proteins. 2006 May 15;63(3):451-6. doi: 10.1002/prot.20902.
7
Analysis of TASSER-based CASP7 protein structure prediction results.
Proteins. 2007;69 Suppl 8:90-7. doi: 10.1002/prot.21649.
9
CASD-NMR 2: robust and accurate unsupervised analysis of raw NOESY spectra and protein structure determination with UNIO.
J Biomol NMR. 2015 Aug;62(4):473-80. doi: 10.1007/s10858-015-9934-7. Epub 2015 Apr 28.
10
Integration of QUARK and I-TASSER for Ab Initio Protein Structure Prediction in CASP11.
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):76-86. doi: 10.1002/prot.24930. Epub 2015 Sep 23.

引用本文的文献

1
Hybrid methods for combined experimental and computational determination of protein structure.
J Chem Phys. 2020 Dec 28;153(24):240901. doi: 10.1063/5.0026025.
2
The second round of Critical Assessment of Automated Structure Determination of Proteins by NMR: CASD-NMR-2013.
J Biomol NMR. 2015 Aug;62(4):413-24. doi: 10.1007/s10858-015-9953-4. Epub 2015 Jun 14.

本文引用的文献

1
The I-TASSER Suite: protein structure and function prediction.
Nat Methods. 2015 Jan;12(1):7-8. doi: 10.1038/nmeth.3213.
2
Robust and highly accurate automatic NOESY assignment and structure determination with Rosetta.
J Biomol NMR. 2014 Jul;59(3):135-45. doi: 10.1007/s10858-014-9832-4. Epub 2014 May 21.
3
De novo structure prediction of globular proteins aided by sequence variation-derived contacts.
PLoS One. 2014 Mar 17;9(3):e92197. doi: 10.1371/journal.pone.0092197. eCollection 2014.
4
Protein NMR structures refined with Rosetta have higher accuracy relative to corresponding X-ray crystal structures.
J Am Chem Soc. 2014 Feb 5;136(5):1893-906. doi: 10.1021/ja409845w. Epub 2014 Jan 23.
5
MOTOR: model assisted software for NMR structure determination.
Proteins. 2013 Nov;81(11):2007-22. doi: 10.1002/prot.24361. Epub 2013 Aug 23.
6
Blind testing of routine, fully automated determination of protein structures from NMR data.
Structure. 2012 Feb 8;20(2):227-36. doi: 10.1016/j.str.2012.01.002.
7
8
SHIFTX2: significantly improved protein chemical shift prediction.
J Biomol NMR. 2011 May;50(1):43-57. doi: 10.1007/s10858-011-9478-4. Epub 2011 Mar 30.
9
I-TASSER: a unified platform for automated protein structure and function prediction.
Nat Protoc. 2010 Apr;5(4):725-38. doi: 10.1038/nprot.2010.5. Epub 2010 Mar 25.
10
HAAD: A quick algorithm for accurate prediction of hydrogen atoms in protein structures.
PLoS One. 2009 Aug 20;4(8):e6701. doi: 10.1371/journal.pone.0006701.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验