Suppr超能文献

运动期间的最大氧化能力与骨骼肌燃料选择及线粒体蛋白乙酰化的动态变化有关。

Maximal oxidative capacity during exercise is associated with skeletal muscle fuel selection and dynamic changes in mitochondrial protein acetylation.

作者信息

Overmyer Katherine A, Evans Charles R, Qi Nathan R, Minogue Catherine E, Carson Joshua J, Chermside-Scabbo Christopher J, Koch Lauren G, Britton Steven L, Pagliarini David J, Coon Joshua J, Burant Charles F

机构信息

Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Cell Metab. 2015 Mar 3;21(3):468-78. doi: 10.1016/j.cmet.2015.02.007.

Abstract

Maximal exercise-associated oxidative capacity is strongly correlated with health and longevity in humans. Rats selectively bred for high running capacity (HCR) have improved metabolic health and are longer-lived than their low-capacity counterparts (LCR). Using metabolomic and proteomic profiling, we show that HCR efficiently oxidize fatty acids (FAs) and branched-chain amino acids (BCAAs), sparing glycogen and reducing accumulation of short- and medium-chain acylcarnitines. HCR mitochondria have reduced acetylation of mitochondrial proteins within oxidative pathways at rest, and there is rapid protein deacetylation with exercise, which is greater in HCR than LCR. Fluxomic analysis of valine degradation with exercise demonstrates a functional role of differential protein acetylation in HCR and LCR. Our data suggest that efficient FA and BCAA utilization contribute to high intrinsic exercise capacity and the health and longevity benefits associated with enhanced fitness.

摘要

最大运动相关氧化能力与人类的健康和长寿密切相关。经过选择性培育具有高跑步能力(HCR)的大鼠,其代谢健康状况得到改善,寿命也比低能力对应组(LCR)的大鼠更长。通过代谢组学和蛋白质组学分析,我们发现HCR大鼠能够高效氧化脂肪酸(FAs)和支链氨基酸(BCAAs),节省糖原并减少短链和中链酰基肉碱的积累。HCR大鼠的线粒体在静息状态下氧化途径中的线粒体蛋白乙酰化程度降低,运动时蛋白质去乙酰化迅速,且HCR大鼠比LCR大鼠更为明显。运动时缬氨酸降解的通量组学分析表明,差异蛋白质乙酰化在HCR和LCR大鼠中发挥了功能性作用。我们的数据表明,高效的脂肪酸和支链氨基酸利用有助于提高内在运动能力以及与增强体能相关的健康和长寿益处。

相似文献

2
Systems-level computational modeling demonstrates fuel selection switching in high capacity running and low capacity running rats.
PLoS Comput Biol. 2018 Feb 23;14(2):e1005982. doi: 10.1371/journal.pcbi.1005982. eCollection 2018 Feb.
3
Low intrinsic running capacity is associated with reduced skeletal muscle substrate oxidation and lower mitochondrial content in white skeletal muscle.
Am J Physiol Regul Integr Comp Physiol. 2011 Apr;300(4):R835-43. doi: 10.1152/ajpregu.00659.2010. Epub 2011 Jan 26.
4
Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure.
J Cachexia Sarcopenia Muscle. 2018 Oct;9(5):844-859. doi: 10.1002/jcsm.12322. Epub 2018 Aug 30.
5
Voluntary Running Attenuates Metabolic Dysfunction in Ovariectomized Low-Fit Rats.
Med Sci Sports Exerc. 2017 Feb;49(2):254-264. doi: 10.1249/MSS.0000000000001101.
6
Exercise training enhances white adipose tissue metabolism in rats selectively bred for low- or high-endurance running capacity.
Am J Physiol Endocrinol Metab. 2013 Aug 1;305(3):E429-38. doi: 10.1152/ajpendo.00544.2012. Epub 2013 Jun 11.
7
Enhanced mitochondrial sensitivity to creatine in rats bred for high aerobic capacity.
J Appl Physiol (1985). 2006 Jun;100(6):1765-9. doi: 10.1152/japplphysiol.01533.2005. Epub 2006 Jan 19.
8
Effects of intrinsic aerobic capacity, aging and voluntary running on skeletal muscle sirtuins and heat shock proteins.
Exp Gerontol. 2016 Jun 15;79:46-54. doi: 10.1016/j.exger.2016.03.015. Epub 2016 Mar 31.
9
Aerobic capacity and hepatic mitochondrial lipid oxidation alters susceptibility for chronic high-fat diet-induced hepatic steatosis.
Am J Physiol Endocrinol Metab. 2016 Oct 1;311(4):E749-E760. doi: 10.1152/ajpendo.00178.2016. Epub 2016 Sep 6.
10
Divergent skeletal muscle respiratory capacities in rats artificially selected for high and low running ability: a role for Nor1?
J Appl Physiol (1985). 2012 Nov;113(9):1403-12. doi: 10.1152/japplphysiol.00788.2012. Epub 2012 Aug 30.

引用本文的文献

2
Ketone body β-hydroxybutyrate-mediated histone β-hydroxybutyrylation upregulates lipolysis and attenuates metabolic syndrome.
Am J Physiol Cell Physiol. 2025 Sep 1;329(3):C726-C743. doi: 10.1152/ajpcell.00453.2025. Epub 2025 Jul 28.
5
The role of BCAA metabolism in metabolic health and disease.
Exp Mol Med. 2024 Jul;56(7):1552-1559. doi: 10.1038/s12276-024-01263-6. Epub 2024 Jul 2.
6
Exploring the metabolomics profile of frailty- a systematic review.
J Diabetes Metab Disord. 2024 Jan 13;23(1):289-303. doi: 10.1007/s40200-023-01379-y. eCollection 2024 Jun.
7
Temporal dynamics of the multi-omic response to endurance exercise training.
Nature. 2024 May;629(8010):174-183. doi: 10.1038/s41586-023-06877-w. Epub 2024 May 1.
8
Metabolomic and proteomic applications to exercise biomedicine.
Transl Exerc Biomed. 2024 Mar 21;1(1):9-22. doi: 10.1515/teb-2024-2006. eCollection 2024 May.
9
Exercise-Regulated Mitochondrial and Nuclear Signalling Networks in Skeletal Muscle.
Sports Med. 2024 May;54(5):1097-1119. doi: 10.1007/s40279-024-02007-2. Epub 2024 Mar 25.

本文引用的文献

1
Branched-chain amino acids in metabolic signalling and insulin resistance.
Nat Rev Endocrinol. 2014 Dec;10(12):723-36. doi: 10.1038/nrendo.2014.171. Epub 2014 Oct 7.
3
The growing landscape of lysine acetylation links metabolism and cell signalling.
Nat Rev Mol Cell Biol. 2014 Aug;15(8):536-50. doi: 10.1038/nrm3841.
4
The paradox of mitochondrial dysfunction and extended longevity.
Exp Gerontol. 2014 Aug;56:221-33. doi: 10.1016/j.exger.2014.03.016. Epub 2014 Apr 1.
5
Leanness and heightened nonresting energy expenditure: role of skeletal muscle activity thermogenesis.
Am J Physiol Endocrinol Metab. 2014 Mar;306(6):E635-47. doi: 10.1152/ajpendo.00555.2013. Epub 2014 Jan 7.
7
Genetic analysis of a rat model of aerobic capacity and metabolic fitness.
PLoS One. 2013 Oct 11;8(10):e77588. doi: 10.1371/journal.pone.0077588. eCollection 2013.
9
Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation.
J Biol Chem. 2013 Sep 6;288(36):26209-26219. doi: 10.1074/jbc.M113.483396. Epub 2013 Jul 17.
10
Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool.
BMC Bioinformatics. 2013 Apr 15;14:128. doi: 10.1186/1471-2105-14-128.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验