Suppr超能文献

两种噬菌体phiIPLA-RODI和phiIPLA-C1C可裂解单菌种和双菌种葡萄球菌生物膜。

Two Phages, phiIPLA-RODI and phiIPLA-C1C, Lyse Mono- and Dual-Species Staphylococcal Biofilms.

作者信息

Gutiérrez Diana, Vandenheuvel Dieter, Martínez Beatriz, Rodríguez Ana, Lavigne Rob, García Pilar

机构信息

Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Departamento de Tecnología y Biotecnología de Productos Lácteos Villaviciosa, Asturias, Spain.

Laboratory of Gene Technology, KU Leuven, Leuven, Belgium.

出版信息

Appl Environ Microbiol. 2015 May 15;81(10):3336-48. doi: 10.1128/AEM.03560-14. Epub 2015 Mar 6.

Abstract

Phage therapy is a promising option for fighting against staphylococcal infections. Two lytic phages, vB_SauM_phiIPLA-RODI (phiIPLA-RODI) and vB_SepM_phiIPLA-C1C (phiIPLA-C1C), belonging to the Myoviridae family and exhibiting wide host ranges, were characterized in this study. The complete genome sequences comprised 142,348 bp and 140,961 bp and contained 213 and 203 open reading frames, respectively. The gene organization was typical of Spounavirinae members, with long direct terminal repeats (LTRs), genes grouped into modules not clearly separated from each other, and several group I introns. In addition, four genes encoding tRNAs were identified in phiIPLA-RODI. Comparative DNA sequence analysis showed high similarities with two phages, GH15 and 676Z, belonging to the Twort-like virus genus (nucleotide identities of >84%); for phiIPLA-C1C, a high similarity with phage phiIBB-SEP1 was observed (identity of 80%). Challenge assays of phages phiIPLA-RODI and phiIPLA-C1C against planktonic staphylococcal cells confirmed their lytic ability, as they were able to remove 5 log units in 8 h. Exposure of biofilms to phages phiIPLA-RODI and phiIPLA-C1C reduced the amount of adhered bacteria to about 2 log units in both monospecies and dual-species biofilms, but phiIPLA-RODI turned out to be as effective as the mixture of both phages. Moreover, the frequencies of bacteriophage-insensitive mutants (BIMs) of Staphylococcus aureus and S. epidermidis with resistance to phiIPLA-RODI and phiIPLA-C1C were low, at 4.05 × 10(-7) ± 2.34 × 10(-9) and 1.1 × 10(-7) ± 2.08 × 10(-9), respectively. Overall, a generally reduced fitness in the absence of phages was observed for BIMs, which showed a restored phage-sensitive phenotype in a few generations. These results confirm that lytic bacteriophages can be efficient biofilm-disrupting agents, supporting their potential as antimicrobials against staphylococcal infections.

摘要

噬菌体疗法是对抗葡萄球菌感染的一种有前景的选择。在本研究中对两种裂解性噬菌体进行了特性分析,即属于肌尾噬菌体科且具有广泛宿主范围的vB_SauM_phiIPLA - RODI(phiIPLA - RODI)和vB_SepM_phiIPLA - C1C(phiIPLA - C1C)。其完整基因组序列分别为142,348 bp和140,961 bp,分别包含213个和203个开放阅读框。基因组织是葡萄球菌病毒亚科成员的典型特征,具有长的直接末端重复序列(LTRs),基因被分组为彼此没有明显分隔的模块,并且有几个I组内含子。此外,在phiIPLA - RODI中鉴定出四个编码tRNA的基因。比较DNA序列分析表明,它与属于Twort样病毒属的两种噬菌体GH15和676Z具有高度相似性(核苷酸同一性>84%);对于phiIPLA - C1C,观察到与噬菌体phiIBB - SEP1具有高度相似性(同一性为80%)。噬菌体phiIPLA - RODI和phiIPLA - C1C对浮游葡萄球菌细胞的挑战试验证实了它们的裂解能力,因为它们能够在8小时内清除5个对数单位的细菌。将生物膜暴露于噬菌体phiIPLA - RODI和phiIPLA - C1C下,在单物种和双物种生物膜中,使附着细菌的数量减少到约2个对数单位,但phiIPLA - RODI被证明与两种噬菌体的混合物一样有效。此外,金黄色葡萄球菌和表皮葡萄球菌对phiIPLA - RODI和phiIPLA - C1C具有抗性的噬菌体不敏感突变体(BIMs)的频率较低,分别为4.05×10(-7)±2.34×10(-9)和1.1×10(-7)±2.08×10(-9)。总体而言,观察到BIMs在没有噬菌体的情况下适应性普遍降低,并且在几代后显示出恢复的噬菌体敏感表型。这些结果证实裂解性噬菌体可以是有效的生物膜破坏剂,支持了它们作为抗葡萄球菌感染抗菌剂的潜力。

相似文献

1
Two Phages, phiIPLA-RODI and phiIPLA-C1C, Lyse Mono- and Dual-Species Staphylococcal Biofilms.
Appl Environ Microbiol. 2015 May 15;81(10):3336-48. doi: 10.1128/AEM.03560-14. Epub 2015 Mar 6.
4
Analysis of Different Parameters Affecting Diffusion, Propagation and Survival of Staphylophages in Bacterial Biofilms.
Front Microbiol. 2018 Sep 28;9:2348. doi: 10.3389/fmicb.2018.02348. eCollection 2018.
8
Identification and molecular characterization of Serratia marcescens phages vB_SmaA_2050H1 and vB_SmaM_2050HW.
Arch Virol. 2019 Apr;164(4):1085-1094. doi: 10.1007/s00705-019-04169-1. Epub 2019 Feb 20.
10
Isolation, characterization and genomic analysis of vB-AhyM-AP1, a lytic bacteriophage infecting Aeromonas hydrophila.
J Appl Microbiol. 2021 Aug;131(2):695-705. doi: 10.1111/jam.14997. Epub 2021 Jan 23.

引用本文的文献

1
Novel MRSA-targeting phage MetB16: Genomic features, structural insights, and therapeutic applications.
Turk J Biol. 2025 Feb 14;49(3):292-308. doi: 10.55730/1300-0152.2746. eCollection 2025.
2
Isolation and characterization of methicillin-resistant phage SPB against MRSA planktonic cells and biofilm.
Front Microbiol. 2025 May 21;16:1554182. doi: 10.3389/fmicb.2025.1554182. eCollection 2025.
3
Present and future of microbiome-targeting therapeutics.
J Clin Invest. 2025 Jun 2;135(11). doi: 10.1172/JCI184323.
5
In Vitro Activity of Bacteriophages Against Ocular Methicillin-resistant S. aureus Isolates Collected in the US.
Ophthalmol Ther. 2025 May;14(5):897-909. doi: 10.1007/s40123-025-01113-2. Epub 2025 Mar 12.
7
Re-Emergence of Bacteriophages and Their Products as Antibacterial Agents: An Overview.
Int J Mol Sci. 2025 Feb 19;26(4):1755. doi: 10.3390/ijms26041755.
8
A new bacteriophage infecting with potential for removing biofilms by combination with chimeric lysin CHAPSH3b and vancomycin.
mSphere. 2025 Mar 25;10(3):e0101424. doi: 10.1128/msphere.01014-24. Epub 2025 Feb 21.

本文引用的文献

1
Effective removal of staphylococcal biofilms by the endolysin LysH5.
PLoS One. 2014 Sep 9;9(9):e107307. doi: 10.1371/journal.pone.0107307. eCollection 2014.
2
Improving the safety of Staphylococcus aureus polyvalent phages by their production on a Staphylococcus xylosus strain.
PLoS One. 2014 Jul 25;9(7):e102600. doi: 10.1371/journal.pone.0102600. eCollection 2014.
3
Comparison of five bacteriophages as models for viral aerosol studies.
Appl Environ Microbiol. 2014 Jul;80(14):4242-50. doi: 10.1128/AEM.00767-14. Epub 2014 May 2.
4
Bacteriophage reduces biofilm of Staphylococcus aureus ex vivo isolates from chronic rhinosinusitis patients.
Am J Rhinol Allergy. 2014 Jan-Feb;28(1):3-11. doi: 10.2500/ajra.2014.28.4001.
5
Experimental phage therapy against lethal lung-derived septicemia caused by Staphylococcus aureus in mice.
Microbes Infect. 2014 Jun;16(6):512-7. doi: 10.1016/j.micinf.2014.02.011. Epub 2014 Mar 12.
6
The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST).
Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14. doi: 10.1093/nar/gkt1226. Epub 2013 Nov 29.
7
Isolation and characterization of a new Staphylococcus epidermidis broad-spectrum bacteriophage.
J Gen Virol. 2014 Feb;95(Pt 2):506-515. doi: 10.1099/vir.0.060590-0. Epub 2013 Nov 4.
8
Attachment and biofilm forming capabilities of Staphylococcus epidermidis strains isolated from preterm infants.
Curr Microbiol. 2013 Dec;67(6):712-7. doi: 10.1007/s00284-013-0425-3. Epub 2013 Jul 30.
9
Evaluating efficacy of bacteriophage therapy against Staphylococcus aureus infections using a silkworm larval infection model.
FEMS Microbiol Lett. 2013 Oct;347(1):52-60. doi: 10.1111/1574-6968.12220. Epub 2013 Aug 6.
10
Stability of Staphylococcus aureus phage ISP after freeze-drying (lyophilization).
PLoS One. 2013 Jul 2;8(7):e68797. doi: 10.1371/journal.pone.0068797. Print 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验