Suppr超能文献

通过人骨髓间充质干细胞构建体的自组装和融合制备用于气管组织替代的工程化软骨管

Engineered cartilaginous tubes for tracheal tissue replacement via self-assembly and fusion of human mesenchymal stem cell constructs.

作者信息

Dikina Anna D, Strobel Hannah A, Lai Bradley P, Rolle Marsha W, Alsberg Eben

机构信息

Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.

Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, USA.

出版信息

Biomaterials. 2015 Jun;52:452-62. doi: 10.1016/j.biomaterials.2015.01.073. Epub 2015 Mar 18.

Abstract

There is a critical need to engineer a neotrachea because currently there are no long-term treatments for tracheal stenoses affecting large portions of the airway. In this work, a modular tracheal tissue replacement strategy was developed. High-cell density, scaffold-free human mesenchymal stem cell-derived cartilaginous rings and tubes were successfully generated through employment of custom designed culture wells and a ring-to-tube assembly system. Furthermore, incorporation of transforming growth factor-β1-delivering gelatin microspheres into the engineered tissues enhanced chondrogenesis with regard to tissue size and matrix production and distribution in the ring- and tube-shaped constructs, as well as luminal rigidity of the tubes. Importantly, all engineered tissues had similar or improved biomechanical properties compared to rat tracheas, which suggests they could be transplanted into a small animal model for airway defects. The modular, bottom up approach used to grow stem cell-based cartilaginous tubes in this report is a promising platform to engineer complex organs (e.g., trachea), with control over tissue size and geometry, and has the potential to be used to generate autologous tissue implants for human clinical applications.

摘要

由于目前对于影响大部分气道的气管狭窄尚无长期治疗方法,因此迫切需要构建人造气管。在这项研究中,开发了一种模块化气管组织替代策略。通过使用定制设计的培养孔和环管组装系统,成功生成了高细胞密度、无支架的人骨髓间充质干细胞来源的软骨环和软骨管。此外,将递送转化生长因子-β1的明胶微球掺入工程组织中,在组织大小、基质产生和分布方面增强了环管结构中的软骨形成,以及管腔的硬度。重要的是,与大鼠气管相比,所有工程组织都具有相似或更好的生物力学性能,这表明它们可以移植到气道缺损的小动物模型中。本报告中用于培养基于干细胞的软骨管的模块化、自下而上的方法是构建复杂器官(如气管)的一个有前景的平台,能够控制组织大小和几何形状,并且有潜力用于生成用于人类临床应用的自体组织植入物。

相似文献

1
Engineered cartilaginous tubes for tracheal tissue replacement via self-assembly and fusion of human mesenchymal stem cell constructs.
Biomaterials. 2015 Jun;52:452-62. doi: 10.1016/j.biomaterials.2015.01.073. Epub 2015 Mar 18.
6
Fabrication of a neotrachea using engineered cartilage.
Laryngoscope. 2008 Apr;118(4):593-8. doi: 10.1097/MLG.0b013e318161f9f8.
7
Mesenchymal cells condensation-inducible mesh scaffolds for cartilage tissue engineering.
Biomaterials. 2016 Apr;85:18-29. doi: 10.1016/j.biomaterials.2016.01.048. Epub 2016 Jan 22.
10
Tissue-engineered tracheal reconstruction using mesenchymal stem cells seeded on a porcine cartilage powder scaffold.
Ann Biomed Eng. 2015 Apr;43(4):1003-13. doi: 10.1007/s10439-014-1126-1. Epub 2014 Sep 25.

引用本文的文献

1
From niche to organoid: Engineering bone tissues through microenvironmental insights.
J Tissue Eng. 2025 Jul 29;16:20417314251358567. doi: 10.1177/20417314251358567. eCollection 2025 Jan-Dec.
3
Multi-Tissue Integrated Tissue-Engineered Trachea Regeneration Based on 3D Printed Bioelastomer Scaffolds.
Adv Sci (Weinh). 2024 Oct;11(39):e2405420. doi: 10.1002/advs.202405420. Epub 2024 Aug 19.
4
Tracheal Tissue Engineering: Principles and State of the Art.
Bioengineering (Basel). 2024 Feb 19;11(2):198. doi: 10.3390/bioengineering11020198.
5
Evaluation of a decellularized bronchial patch transplant in a porcine model.
Sci Rep. 2023 Dec 8;13(1):21773. doi: 10.1038/s41598-023-48643-y.
6
Steering Stem Cell Fate within 3D Living Composite Tissues Using Stimuli-Responsive Cell-Adhesive Micromaterials.
Adv Sci (Weinh). 2023 Apr;10(10):e2205487. doi: 10.1002/advs.202205487. Epub 2023 Jan 4.
7
Biofabrication of Modular Spheroids as Tumor-Scale Microenvironments for Drug Screening.
Adv Healthc Mater. 2023 Jun;12(14):e2201581. doi: 10.1002/adhm.202201581. Epub 2022 Dec 25.
8
Commentary: The search for a breakthrough in tracheal replacement surgery: The good, the bad, and the downright ugly.
JTCVS Open. 2020 Dec 23;5:161-162. doi: 10.1016/j.xjon.2020.12.010. eCollection 2021 Mar.
9
4D Cell-Condensate Bioprinting.
Small. 2022 Sep;18(36):e2202196. doi: 10.1002/smll.202202196. Epub 2022 Aug 16.
10
Enhancing Stem Cell-Based Therapeutic Potential by Combining Various Bioengineering Technologies.
Front Cell Dev Biol. 2022 Jul 5;10:901661. doi: 10.3389/fcell.2022.901661. eCollection 2022.

本文引用的文献

3
Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation.
Proc Natl Acad Sci U S A. 2014 May 13;111(19):6940-5. doi: 10.1073/pnas.1324050111. Epub 2014 Apr 28.
5
Macromolecular crowding meets tissue engineering by self-assembly: a paradigm shift in regenerative medicine.
Adv Mater. 2014 May 21;26(19):3024-34. doi: 10.1002/adma.201304428. Epub 2014 Feb 6.
6
Surgical management of benign tracheal stenosis.
Multimed Man Cardiothorac Surg. 2011 Jan 1;2011(1111):mmcts.2010.004945. doi: 10.1510/mmcts.2010.004945.
8
Type I collagen-based fibrous capsule enhances integration of tissue-engineered cartilage with native articular cartilage.
Ann Biomed Eng. 2014 Apr;42(4):716-26. doi: 10.1007/s10439-013-0958-4. Epub 2013 Dec 21.
9
Reconstruction of the trachea.
J Reconstr Microsurg. 2014 Mar;30(3):153-62. doi: 10.1055/s-0033-1358786. Epub 2013 Dec 12.
10
Micro-mold design controls the 3D morphological evolution of self-assembling multicellular microtissues.
Tissue Eng Part A. 2014 Apr;20(7-8):1134-44. doi: 10.1089/ten.TEA.2013.0297. Epub 2013 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验