Suppr超能文献

具有广泛tRNA特异性的同源反式编辑因子可防止丝氨酸/苏氨酸错误激活引起的错译。

Homologous trans-editing factors with broad tRNA specificity prevent mistranslation caused by serine/threonine misactivation.

作者信息

Liu Ziwei, Vargas-Rodriguez Oscar, Goto Yuki, Novoa Eva Maria, Ribas de Pouplana Lluís, Suga Hiroaki, Musier-Forsyth Karin

机构信息

Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH 43210;

Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan;

出版信息

Proc Natl Acad Sci U S A. 2015 May 12;112(19):6027-32. doi: 10.1073/pnas.1423664112. Epub 2015 Apr 27.

Abstract

Aminoacyl-tRNA synthetases (ARSs) establish the rules of the genetic code, whereby each amino acid is attached to a cognate tRNA. Errors in this process lead to mistranslation, which can be toxic to cells. The selective forces exerted by species-specific requirements and environmental conditions potentially shape quality-control mechanisms that serve to prevent mistranslation. A family of editing factors that are homologous to the editing domain of bacterial prolyl-tRNA synthetase includes the previously characterized trans-editing factors ProXp-ala and YbaK, which clear Ala-tRNA(Pro) and Cys-tRNA(Pro), respectively, and three additional homologs of unknown function, ProXp-x, ProXp-y, and ProXp-z. We performed an in vivo screen of 230 conditions in which an Escherichia coli proXp-y deletion strain was grown in the presence of elevated levels of amino acids and specific ARSs. This screen, together with the results of in vitro deacylation assays, revealed Ser- and Thr-tRNA deacylase function for this homolog. A similar activity was demonstrated for Bordetella parapertussis ProXp-z in vitro. These proteins, now renamed "ProXp-ST1" and "ProXp-ST2," respectively, recognize multiple tRNAs as substrates. Taken together, our data suggest that these free-standing editing domains have the ability to prevent mistranslation errors caused by a number of ARSs, including lysyl-tRNA synthetase, threonyl-tRNA synthetase, seryl-tRNA synthetase, and alanyl-tRNA synthetase. The expression of these multifunctional enzymes is likely to provide a selective growth advantage to organisms subjected to environmental stresses and other conditions that alter the amino acid pool.

摘要

氨酰-tRNA合成酶(ARSs)确立了遗传密码规则,据此每种氨基酸都与相应的tRNA相连。这一过程中的错误会导致错译,而错译对细胞可能有毒性。物种特异性需求和环境条件施加的选择压力可能塑造了用于防止错译的质量控制机制。一类与细菌脯氨酰-tRNA合成酶的编辑结构域同源的编辑因子包括先前已表征的反式编辑因子ProXp-ala和YbaK,它们分别清除丙氨酰-tRNA(Pro)和半胱氨酰-tRNA(Pro),以及另外三个功能未知的同源物ProXp-x、ProXp-y和ProXp-z。我们对230种条件进行了体内筛选,在这些条件下,一株大肠杆菌proXp-y缺失菌株在氨基酸和特定ARSs水平升高的情况下生长。该筛选以及体外脱酰基测定结果揭示了该同源物的丝氨酰-tRNA和苏氨酰-tRNA脱酰酶功能。体外实验证明百日咳博德特氏菌的ProXp-z也有类似活性。这些蛋白质现在分别重新命名为“ProXp-ST1”和“ProXp-ST2”,它们将多种tRNA识别为底物。综合来看,我们的数据表明这些独立的编辑结构域有能力防止由多种ARSs引起的错译错误,包括赖氨酰-tRNA合成酶、苏氨酰-tRNA合成酶、丝氨酰-tRNA合成酶和丙氨酰-tRNA合成酶。这些多功能酶的表达可能为遭受环境压力和其他改变氨基酸库的条件的生物体提供选择性生长优势。

相似文献

1
Homologous trans-editing factors with broad tRNA specificity prevent mistranslation caused by serine/threonine misactivation.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):6027-32. doi: 10.1073/pnas.1423664112. Epub 2015 Apr 27.
2
Exclusive use of trans-editing domains prevents proline mistranslation.
J Biol Chem. 2013 May 17;288(20):14391-14399. doi: 10.1074/jbc.M113.467795. Epub 2013 Apr 5.
3
Distinct tRNA recognition strategies used by a homologous family of editing domains prevent mistranslation.
Nucleic Acids Res. 2014 Apr;42(6):3943-53. doi: 10.1093/nar/gkt1332. Epub 2013 Dec 25.
4
Quality control by trans-editing factor prevents global mistranslation of non-protein amino acid α-aminobutyrate.
RNA Biol. 2018;15(4-5):576-585. doi: 10.1080/15476286.2017.1353846. Epub 2017 Nov 3.
5
Conformational and chemical selection by a -acting editing domain.
Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):E6774-E6783. doi: 10.1073/pnas.1703925114. Epub 2017 Aug 2.
6
Plant-exclusive domain of trans-editing enzyme ProXp-ala confers dimerization and enhanced tRNA binding.
J Biol Chem. 2022 Sep;298(9):102255. doi: 10.1016/j.jbc.2022.102255. Epub 2022 Jul 12.
7
Ancestral AlaX editing enzymes for control of genetic code fidelity are not tRNA-specific.
J Biol Chem. 2015 Apr 17;290(16):10495-503. doi: 10.1074/jbc.M115.640060. Epub 2015 Feb 27.
8
Human -editing enzyme displays tRNA acceptor-stem specificity and relaxed amino acid selectivity.
J Biol Chem. 2020 Nov 27;295(48):16180-16190. doi: 10.1074/jbc.RA120.015981. Epub 2020 Oct 13.
9
Cys-tRNA(Pro) editing by Haemophilus influenzae YbaK via a novel synthetase.YbaK.tRNA ternary complex.
J Biol Chem. 2005 Oct 14;280(41):34465-72. doi: 10.1074/jbc.M507550200. Epub 2005 Aug 8.
10
Stoichiometry of triple-sieve tRNA editing complex ensures fidelity of aminoacyl-tRNA formation.
Nucleic Acids Res. 2019 Jan 25;47(2):929-940. doi: 10.1093/nar/gky1153.

引用本文的文献

1
Unexpected enzymatic function of an ancient nucleic acid-binding fold.
Nucleic Acids Res. 2025 Apr 22;53(8). doi: 10.1093/nar/gkaf328.
2
Strategies for detecting aminoacylation and aminoacyl-tRNA editing and in cells.
Isr J Chem. 2024 Sep;64(8-9). doi: 10.1002/ijch.202400009. Epub 2024 May 6.
4
The role of tRNA identity elements in aminoacyl-tRNA editing.
Front Microbiol. 2024 Jul 18;15:1437528. doi: 10.3389/fmicb.2024.1437528. eCollection 2024.
5
multi-aminoacyl-tRNA synthetase complex formation limits promiscuous tRNA proofreading.
Front Microbiol. 2024 Jul 16;15:1445687. doi: 10.3389/fmicb.2024.1445687. eCollection 2024.
6
Eukaryotic AlaX provides multiple checkpoints for quality and quantity of aminoacyl-tRNAs in translation.
Nucleic Acids Res. 2024 Jul 22;52(13):7825-7842. doi: 10.1093/nar/gkae486.
7
Adaptation of a eukaryote-like ProRS to a prokaryote-like tRNAPro.
Nucleic Acids Res. 2024 Jul 8;52(12):7158-7170. doi: 10.1093/nar/gkae483.
8
The tRNA identity landscape for aminoacylation and beyond.
Nucleic Acids Res. 2023 Feb 28;51(4):1528-1570. doi: 10.1093/nar/gkad007.
10
Negative catalysis by the editing domain of class I aminoacyl-tRNA synthetases.
Nucleic Acids Res. 2022 Apr 22;50(7):4029-4041. doi: 10.1093/nar/gkac207.

本文引用的文献

1
The physiological target for LeuRS translational quality control is norvaline.
EMBO J. 2014 Aug 1;33(15):1639-53. doi: 10.15252/embj.201488199. Epub 2014 Jun 16.
4
Distinct tRNA recognition strategies used by a homologous family of editing domains prevent mistranslation.
Nucleic Acids Res. 2014 Apr;42(6):3943-53. doi: 10.1093/nar/gkt1332. Epub 2013 Dec 25.
5
Adaptive translation as a mechanism of stress response and adaptation.
Annu Rev Genet. 2013;47:121-37. doi: 10.1146/annurev-genet-111212-133522. Epub 2013 Aug 28.
6
Synthetic and editing mechanisms of aminoacyl-tRNA synthetases.
Top Curr Chem. 2014;344:1-41. doi: 10.1007/128_2013_456.
7
Exclusive use of trans-editing domains prevents proline mistranslation.
J Biol Chem. 2013 May 17;288(20):14391-14399. doi: 10.1074/jbc.M113.467795. Epub 2013 Apr 5.
8
Aminoacyl-tRNA substrate and enzyme backbone atoms contribute to translational quality control by YbaK.
J Phys Chem B. 2013 Apr 25;117(16):4521-7. doi: 10.1021/jp308628y. Epub 2012 Dec 6.
9
Network context and selection in the evolution to enzyme specificity.
Science. 2012 Aug 31;337(6098):1101-4. doi: 10.1126/science.1216861.
10
Quality control in aminoacyl-tRNA synthesis its role in translational fidelity.
Adv Protein Chem Struct Biol. 2012;86:1-43. doi: 10.1016/B978-0-12-386497-0.00001-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验