Suppr超能文献

增加细胞内海藻糖足以赋予酿酒酵母耐干燥能力。

Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae.

作者信息

Tapia Hugo, Young Lindsey, Fox Douglas, Bertozzi Carolyn R, Koshland Douglas

机构信息

Department of Molecular and Cell Biology.

Department of Chemistry, and.

出版信息

Proc Natl Acad Sci U S A. 2015 May 12;112(19):6122-7. doi: 10.1073/pnas.1506415112. Epub 2015 Apr 27.

Abstract

Diverse organisms capable of surviving desiccation, termed anhydrobiotes, include species from bacteria, yeast, plants, and invertebrates. However, most organisms are sensitive to desiccation, likely due to an assortment of different stresses such as protein misfolding and aggregation, hyperosmotic stress, membrane fracturing, and changes in cell volume and shape leading to an overcrowded cytoplasm and metabolic arrest. The exact stress(es) that cause lethality in desiccation-sensitive organisms and how the lethal stresses are mitigated in desiccation-tolerant organisms remain poorly understood. The presence of trehalose in anhydrobiotes has been strongly correlated with desiccation tolerance. In the yeast Saccharomyces cerevisiae, trehalose is essential for survival after long-term desiccation. Here, we establish that the elevation of intracellular trehalose in dividing yeast by its import from the media converts yeast from extreme desiccation sensitivity to a high level of desiccation tolerance. This trehalose-induced tolerance is independent of utilization of trehalose as an energy source, de novo synthesis of other stress effectors, or the metabolic effects of trehalose biosynthetic intermediates, indicating that a chemical property of trehalose is directly responsible for desiccation tolerance. Finally, we demonstrate that elevated intracellular maltose can also make dividing yeast tolerant to short-term desiccation, indicating that other disaccharides have stress effector activity. However, trehalose is much more effective than maltose at conferring tolerance to long-term desiccation. The effectiveness and sufficiency of trehalose as an antagonizer of desiccation-induced damage in yeast emphasizes its potential to confer desiccation tolerance to otherwise sensitive organisms.

摘要

能够在脱水状态下存活的多种生物,即所谓的脱水生物,包括细菌、酵母、植物和无脊椎动物中的物种。然而,大多数生物对脱水敏感,这可能是由于一系列不同的应激因素,如蛋白质错误折叠和聚集、高渗应激、膜破裂以及细胞体积和形状的变化,导致细胞质过度拥挤和代谢停滞。导致脱水敏感生物死亡的确切应激因素以及脱水耐受生物如何减轻致死性应激因素,目前仍知之甚少。脱水生物中海藻糖的存在与脱水耐受性密切相关。在酿酒酵母中,海藻糖对于长期脱水后的存活至关重要。在此,我们证实,通过从培养基中导入海藻糖来提高分裂酵母细胞内的海藻糖水平,可将酵母从极端脱水敏感性转变为高度脱水耐受性。这种海藻糖诱导的耐受性与将海藻糖用作能量来源、从头合成其他应激效应物或海藻糖生物合成中间体的代谢效应无关,这表明海藻糖的一种化学性质直接导致了脱水耐受性。最后,我们证明细胞内麦芽糖水平的升高也能使分裂酵母耐受短期脱水,这表明其他二糖也具有应激效应物活性。然而,在赋予长期脱水耐受性方面,海藻糖比麦芽糖有效得多。海藻糖作为酵母中脱水诱导损伤的拮抗剂的有效性和充分性,凸显了其赋予其他敏感生物脱水耐受性的潜力。

相似文献

1
Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):6122-7. doi: 10.1073/pnas.1506415112. Epub 2015 Apr 27.
2
Trehalose is a versatile and long-lived chaperone for desiccation tolerance.
Curr Biol. 2014 Dec 1;24(23):2758-66. doi: 10.1016/j.cub.2014.10.005. Epub 2014 Nov 13.
3
Intracellular trehalose is neither necessary nor sufficient for desiccation tolerance in yeast.
FEMS Yeast Res. 2006 Sep;6(6):902-13. doi: 10.1111/j.1567-1364.2006.00066.x.
4
Desiccation tolerance: an unusual window into stress biology.
Mol Biol Cell. 2019 Mar 15;30(6):737-741. doi: 10.1091/mbc.E17-04-0257.
5
Characterizing the in vivo role of trehalose in Saccharomyces cerevisiae using the AGT1 transporter.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):6116-21. doi: 10.1073/pnas.1506289112. Epub 2015 Apr 27.
7
How to Survive without Water: A Short Lesson on the Desiccation Tolerance of Budding Yeast.
Int J Mol Sci. 2024 Jul 9;25(14):7514. doi: 10.3390/ijms25147514.
9
Trehalose reserve in Saccharomyces cerevisiae: phenomenon of transport, accumulation and role in cell viability.
Int J Food Microbiol. 2000 Apr 10;55(1-3):33-40. doi: 10.1016/s0168-1605(00)00210-5.
10
Two distinct pathways for trehalose assimilation in the yeast Saccharomyces cerevisiae.
Appl Environ Microbiol. 2004 May;70(5):2771-8. doi: 10.1128/AEM.70.5.2771-2778.2004.

引用本文的文献

1
Biomolecular condensates-Prerequisites for anhydrobiosis?
Protein Sci. 2025 Jul;34(7):e70192. doi: 10.1002/pro.70192.
2
Molecular Mechanisms of Environmental Adaptation: A Comprehensive Review.
Plants (Basel). 2025 May 22;14(11):1582. doi: 10.3390/plants14111582.
5
Developing the trehalose biosynthesis pathway as an antifungal drug target.
NPJ Antimicrob Resist. 2025 Apr 14;3(1):30. doi: 10.1038/s44259-025-00095-2.
7
Red-light signaling pathway activates desert cyanobacteria to prepare for desiccation tolerance.
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2502034122. doi: 10.1073/pnas.2502034122. Epub 2025 Mar 20.
8
Effect of halo-tolerance gene Hal5 on ethanol tolerance of .
BBA Adv. 2024 Oct 11;6:100123. doi: 10.1016/j.bbadva.2024.100123. eCollection 2024.
9
Adaptive evolutionary trajectories in complexity: Transitions between unicellularity and facultative differentiated multicellularity.
Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2411692122. doi: 10.1073/pnas.2411692122. Epub 2025 Jan 22.

本文引用的文献

1
Characterizing the in vivo role of trehalose in Saccharomyces cerevisiae using the AGT1 transporter.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):6116-21. doi: 10.1073/pnas.1506289112. Epub 2015 Apr 27.
2
Trehalose is a versatile and long-lived chaperone for desiccation tolerance.
Curr Biol. 2014 Dec 1;24(23):2758-66. doi: 10.1016/j.cub.2014.10.005. Epub 2014 Nov 13.
3
TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae.
Mol Biol Cell. 2013 Jan;24(2):115-28. doi: 10.1091/mbc.E12-07-0524. Epub 2012 Nov 21.
4
Trehalose transporter from African chironomid larvae improves desiccation tolerance of Chinese hamster ovary cells.
Cryobiology. 2012 Apr;64(2):91-6. doi: 10.1016/j.cryobiol.2011.11.007. Epub 2011 Dec 3.
5
Genetic analysis of desiccation tolerance in Sachharomyces cerevisiae.
Genetics. 2011 Oct;189(2):507-19. doi: 10.1534/genetics.111.130369. Epub 2011 Aug 11.
6
Trehalose renders the dauer larva of Caenorhabditis elegans resistant to extreme desiccation.
Curr Biol. 2011 Aug 9;21(15):1331-6. doi: 10.1016/j.cub.2011.06.064. Epub 2011 Jul 21.
7
Maradolipids: diacyltrehalose glycolipids specific to dauer larva in Caenorhabditis elegans.
Angew Chem Int Ed Engl. 2010 Dec 3;49(49):9430-5. doi: 10.1002/anie.201004466.
8
Trehalose and plant stress responses: friend or foe?
Trends Plant Sci. 2010 Jul;15(7):409-17. doi: 10.1016/j.tplants.2010.04.004. Epub 2010 May 20.
9
Rapid expansion and functional divergence of subtelomeric gene families in yeasts.
Curr Biol. 2010 May 25;20(10):895-903. doi: 10.1016/j.cub.2010.04.027. Epub 2010 May 13.
10
When cells lose water: Lessons from biophysics and molecular biology.
Prog Biophys Mol Biol. 2009 Jan;99(1):1-6. doi: 10.1016/j.pbiomolbio.2008.10.001. Epub 2008 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验