MacGregor James T, Frötschl Roland, White Paul A, Crump Kenny S, Eastmond David A, Fukushima Shoji, Guérard Melanie, Hayashi Makoto, Soeteman-Hernández Lya G, Johnson George E, Kasamatsu Toshio, Levy Dan D, Morita Takeshi, Müller Lutz, Schoeny Rita, Schuler Maik J, Thybaud Véronique
Toxicology Consulting Services, Bonita Springs, FL, USA.
Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany.
Mutat Res Genet Toxicol Environ Mutagen. 2015 May 1;783:66-78. doi: 10.1016/j.mrgentox.2014.10.008. Epub 2014 Oct 27.
This is the second of two reports from the International Workshops on Genotoxicity Testing (IWGT) Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (the QWG). The first report summarized the discussions and recommendations of the QWG related to the need for quantitative dose-response analysis of genetic toxicology data, the existence and appropriate evaluation of threshold responses, and methods to analyze exposure-response relationships and derive points of departure (PoDs) from which acceptable exposure levels could be determined. This report summarizes the QWG discussions and recommendations regarding appropriate approaches to evaluate exposure-related risks of genotoxic damage, including extrapolation below identified PoDs and across test systems and species. Recommendations include the selection of appropriate genetic endpoints and target tissues, uncertainty factors and extrapolation methods to be considered, the importance and use of information on mode of action, toxicokinetics, metabolism, and exposure biomarkers when using quantitative exposure-response data to determine acceptable exposure levels in human populations or to assess the risk associated with known or anticipated exposures. The empirical relationship between genetic damage (mutation and chromosomal aberration) and cancer in animal models was also examined. It was concluded that there is a general correlation between cancer induction and mutagenic and/or clastogenic damage for agents thought to act via a genotoxic mechanism, but that the correlation is limited due to an inadequate number of cases in which mutation and cancer can be compared at a sufficient number of doses in the same target tissues of the same species and strain exposed under directly comparable routes and experimental protocols.
这是遗传毒性测试国际研讨会(IWGT)遗传毒理学风险评估定量方法工作组(QWG)的两份报告中的第二份。第一份报告总结了QWG关于遗传毒理学数据定量剂量反应分析的必要性、阈值反应的存在及适当评估,以及分析暴露反应关系和推导可据此确定可接受暴露水平的起始点(PoD)的方法的讨论和建议。本报告总结了QWG关于评估遗传毒性损伤暴露相关风险的适当方法的讨论和建议,包括在已确定的PoD以下进行外推以及跨测试系统和物种进行外推。建议包括选择适当的遗传终点和靶组织、应考虑的不确定性因素和外推方法,在使用定量暴露反应数据确定人群可接受暴露水平或评估与已知或预期暴露相关的风险时,作用模式、毒代动力学、代谢和暴露生物标志物信息的重要性及用途。还研究了动物模型中遗传损伤(突变和染色体畸变)与癌症之间的经验关系。得出的结论是,对于被认为通过遗传毒性机制起作用的物质,癌症诱导与诱变和/或致断裂损伤之间存在一般相关性,但由于在相同物种和品系的相同靶组织中,在直接可比的途径和实验方案下暴露于足够数量剂量时,可比较突变和癌症的案例数量不足,这种相关性受到限制。