Suppr超能文献

PockDrug-Server:一个用于预测全酶和无配体蛋白口袋可成药性的新型网络服务器。

PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins.

作者信息

Hussein Hiba Abi, Borrel Alexandre, Geneix Colette, Petitjean Michel, Regad Leslie, Camproux Anne-Claude

机构信息

INSERM, UMRS-973, MTi, Université Paris Diderot, 35 Rue Hélène Brion, 75205 Paris Cedex 13, case courier 7113, Paris, France Université Paris Diderot, Sorbonne Paris Cité, UMRS-973, MTi, Paris, France.

INSERM, UMRS-973, MTi, Université Paris Diderot, 35 Rue Hélène Brion, 75205 Paris Cedex 13, case courier 7113, Paris, France Université Paris Diderot, Sorbonne Paris Cité, UMRS-973, MTi, Paris, France Division of Pharmaceutical Chemistry, Faculty of pharmacy, University of Helsinki, Viikinkaari 9 (P.O. Box 56) FI-00014, Finland.

出版信息

Nucleic Acids Res. 2015 Jul 1;43(W1):W436-42. doi: 10.1093/nar/gkv462. Epub 2015 May 8.

Abstract

Predicting protein pocket's ability to bind drug-like molecules with high affinity, i.e. druggability, is of major interest in the target identification phase of drug discovery. Therefore, pocket druggability investigations represent a key step of compound clinical progression projects. Currently computational druggability prediction models are attached to one unique pocket estimation method despite pocket estimation uncertainties. In this paper, we propose 'PockDrug-Server' to predict pocket druggability, efficient on both (i) estimated pockets guided by the ligand proximity (extracted by proximity to a ligand from a holo protein structure) and (ii) estimated pockets based solely on protein structure information (based on amino atoms that form the surface of potential binding cavities). PockDrug-Server provides consistent druggability results using different pocket estimation methods. It is robust with respect to pocket boundary and estimation uncertainties, thus efficient using apo pockets that are challenging to estimate. It clearly distinguishes druggable from less druggable pockets using different estimation methods and outperformed recent druggability models for apo pockets. It can be carried out from one or a set of apo/holo proteins using different pocket estimation methods proposed by our web server or from any pocket previously estimated by the user. PockDrug-Server is publicly available at: http://pockdrug.rpbs.univ-paris-diderot.fr.

摘要

预测蛋白质口袋与类药物分子高亲和力结合的能力,即成药性,在药物发现的靶点识别阶段具有重要意义。因此,口袋成药性研究是化合物临床进展项目的关键步骤。目前,尽管口袋估计存在不确定性,但计算成药性预测模型仍依赖于一种独特的口袋估计方法。在本文中,我们提出了“PockDrug-Server”来预测口袋成药性,它对于以下两种情况都很有效:(i)由配体接近度引导的估计口袋(通过与全蛋白结构中的配体接近度提取)和(ii)仅基于蛋白质结构信息的估计口袋(基于形成潜在结合腔表面的氨基原子)。PockDrug-Server使用不同的口袋估计方法提供一致的成药性结果。它对于口袋边界和估计不确定性具有鲁棒性,因此对于难以估计的无配体口袋也很有效。它使用不同的估计方法能够清晰地区分可成药口袋和较难成药的口袋,并且在无配体口袋的成药性预测方面优于最近的模型。它可以从一个或一组无配体/全蛋白使用我们的网络服务器提出的不同口袋估计方法进行,也可以从用户之前估计的任何口袋进行。PockDrug-Server可在以下网址公开获取:http://pockdrug.rpbs.univ-paris-diderot.fr

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858f/4489252/8c65ed5a420c/gkv462fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验