Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza and Instituto de Investigación Sanitaria Aragón (IIS Aragón), c/Domingo Miral s/n, 50009-Zaragoza, and Ciber de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain.
School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
Biochem Pharmacol. 2015 Aug 1;96(3):159-67. doi: 10.1016/j.bcp.2015.05.001. Epub 2015 May 16.
Tuberculosis is still a major health problem worldwide and one of the main causes of death by a single infectious agent. Only few drugs are really effective to treat tuberculosis, hence, the emergence of multiple, extensively, and totally drug resistant bacilli compromises the already difficult antituberculosis treatments. Given the persistent global burden of tuberculosis, it is crucial to understand the underlying mechanisms required for the pathogenicity of Mycobacterium tuberculosis (Mtb), the causal agent of tuberculosis, in order to pave the way for developing better drugs and strategies to treat and prevent tuberculosis. The exclusive mycobacterial cell wall lipids such as trehalose monomycolate and dimycolate (TMM, TDM), phthiocerol dimycocerosate (PDIM), sulpholipid-1 (SL-1), diacyl trehalose (DAT), and pentacyl trehalose (PAT), among others, are known to play an important role in pathogenesis; thus, proteins responsible for their transport are potential virulence factors. MmpL and MmpS proteins mediate transport of important cell wall lipids across the mycobacterial membrane. In Mtb, MmpL3, MmpL7 and MmpL8 transport TMM, PDIM and SL-1 respectively. The translocation of DAT and biosynthesis of PAT is likely due to MmpL10. MmpL and MmpS proteins are involved in other processes such as drug efflux (MmpL5 and MmpL7), siderophore export (MmpL4/MmpS4 and MmpL5/MmpS5), and heme uptake (MmpL3 and MmpL11). Altogether, these proteins can be regarded as new potential targets for antituberculosis drug development. We will review recent advances in developing inhibitors of MmpL proteins, in the challenging context of targeting membrane proteins and the future prospects for potential antituberculosis drug candidates.
结核病仍然是全球主要的健康问题之一,也是单一感染源导致死亡的主要原因之一。仅有少数药物对治疗结核病真正有效,因此,多种、广泛和完全耐药的结核分枝杆菌的出现危及到本已困难的抗结核治疗。鉴于结核病在全球的持续负担,了解结核分枝杆菌(Mtb)致病性所需的潜在机制至关重要,Mtb 是结核病的病原体,这为开发更好的治疗和预防结核病的药物和策略铺平了道路。独特的分枝杆菌细胞壁脂质,如海藻糖单脂和双脂(TMM、TDM)、Phthiocerol 二-mycolate(PDIM)、硫脂-1(SL-1)、二酰基海藻糖(DAT)和五酰基海藻糖(PAT)等,已知在发病机制中起重要作用;因此,负责其运输的蛋白质是潜在的毒力因子。MmpL 和 MmpS 蛋白介导重要细胞壁脂质在分枝杆菌膜中的运输。在 Mtb 中,MmpL3、MmpL7 和 MmpL8 分别转运 TMM、PDIM 和 SL-1。DAT 的易位和 PAT 的生物合成可能归因于 MmpL10。MmpL 和 MmpS 蛋白参与其他过程,如药物外排(MmpL5 和 MmpL7)、铁载体输出(MmpL4/MmpS4 和 MmpL5/MmpS5)和血红素摄取(MmpL3 和 MmpL11)。总之,这些蛋白可以被视为新的潜在抗结核药物开发靶点。我们将综述近年来开发 MmpL 蛋白抑制剂的进展,针对膜蛋白的挑战性背景以及潜在抗结核候选药物的未来前景。