Suppr超能文献

人乳头瘤病毒诱导的高级别宫颈上皮内病变(CIN2/CIN3)的E6/E7 mRNA检测:一个有前景的展望。

E6/E7 mRNA testing for human papilloma virus-induced high-grade cervical intraepithelial disease (CIN2/CIN3): a promising perspective.

作者信息

Origoni Massimo, Cristoforoni Paolo, Carminati Guia, Stefani Chiara, Costa Silvano, Sandri Maria Teresa, Mariani Luciano, Preti Mario

机构信息

Department of Gynaecology & Obstetrics, Vita Salute San Raffaele University, School of Medicine, Milano 20132, Italy.

Polo Oncologico Villa Montallegro, Genova 16145, Italy.

出版信息

Ecancermedicalscience. 2015 Apr 29;9:533. doi: 10.3332/ecancer.2015.533. eCollection 2015.

Abstract

Since the introduction of biomolecular testing for the identification of high-risk human papillomavirus DNA (hrHPV-DNA) in cervical cancer preventive strategies, many interesting aspects have emerged in this field; firstly, HPV-DNA testing has been demonstrated to have better sensitivity than conventional cytology in several settings: screening, triage of ASC-US and in follow-up after treatment. Despite this, some limitations of these new technologies have also been underlined: the major issue is the low specificity of the tests, which cannot discriminate between regressive and progressive infections. Thus, recent research has moved the attention towards novel markers of progression that could more precisely detect cases at real risk of cancer development. In view of the fact that progression to cancer is dependable of the E6/E7 proteins integration and transforming action, the overexpression of E6/E7 transcripts has been seen as a valuable marker of this risk. This review aims to summarise the literature data on this topic and to provide a clear view of the emerging perspectives.

摘要

自从在宫颈癌预防策略中引入用于鉴定高危型人乳头瘤病毒DNA(hrHPV-DNA)的生物分子检测以来,该领域出现了许多有趣的方面;首先,HPV-DNA检测已被证明在多种情况下比传统细胞学具有更高的灵敏度:筛查、非典型鳞状细胞意义不明确(ASC-US)的分流以及治疗后的随访。尽管如此,这些新技术的一些局限性也已被强调:主要问题是检测的低特异性,其无法区分消退性和进展性感染。因此,最近的研究将注意力转向了新的进展标志物,这些标志物可以更精确地检测出真正有癌症发展风险的病例。鉴于癌症进展取决于E6/E7蛋白的整合和转化作用,E6/E7转录本的过表达被视为这种风险的一个有价值的标志物。本综述旨在总结关于该主题的文献数据,并清晰呈现新出现的观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5455/4435751/1e201eb74c0e/can-9-533fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验