Suppr超能文献

氧化损伤机制及其对收缩肌肉的影响

Mechanisms of Oxidative Damage and Their Impact on Contracting Muscle

作者信息

Kerksick Chad M, Zuhl Micah

Abstract

An atom or a group of atoms that contains one or more unpaired electron(s) is termed a free radical, which is often a highly reactive and unstable molecule. Two groups of these radical molecules are often classified as reactive oxygen and reactive nitrogen species, respectively. Stabilisation of these radicals requires electron donation from proteins, lipids and DNA which oftentimes leads to degradation and damage to these molecules. Owing to the potential for cellular damage, much controversy was created by initial reports that indicated that physical exercise increased the production of reactive oxygen species (ROS) (Dillard et al. 1978). This initial work did not reveal the specific location, but later work revealed the contracting skeletal muscle to be a prominent source of ROS (Davies et al. 1982). Years later, it was also revealed that contracting muscles also produced nitric oxide (NO), the predominant parent molecule of reactive nitrogen species (Balon and Nadler 1994), and a number of well-constructed review articles since then have confirmed the contribution of skeletal muscle to the production of both ROS and reactive nitrogen species (Powers and Jackson 2008, Jackson 2009, Powers et al. 2011). The most abundant biological free radicals are formed when oxygen or nitrogen is incompletely reduced, leading to the production of superoxide ([Image: see text]) and NO, processes which will be explained in greater detail later in the chapter. The superoxide parent molecule can subsequently be converted into other ‘radicals’, namely hydrogen peroxide (HO) and the hydroxyl radical (•OH). Removal of ROS is managed by a host of antioxidant systems (e.g. catalase, glutathione/thiol regulation) in the body, and the balance of oxygen species to antioxidants is termed the ‘redox state’. As mentioned previously, dysregulation of the redox state results in radical scavenging of key biomolecules such as proteins, lipids (cell membranes are a common target) and DNA, a process which can leave them damaged and unable to function. For these reasons, early theories in the 1980s and 1990s led to the belief that ROS production was mostly a negative consequence of physical exercise. Furthermore, evidence began to mount that a number of clinical situations such as heart disease, amyotrophic lateral sclerosis, irritable bowel disease, diabetes and ageing were a consequence of excessive ROS production and free radical damage (Sies 1985, Powers and Jackson 2008, Jackson 2009, Tsutsui et al. 2011). Recent perspectives, however, have begun to highlight the fact that both oxygen and nitrogen species exert a key role in the regulation of many intracellular mechanisms and also contribute significantly to various cellular signalling pathways involved with muscle adaptation. For example, several studies and review articles have highlighted the fact that controlled production of both reactive species contribute to mitochondrial biogenesis, angiogenesis, skeletal muscle hypertrophy and proper immune function (Ji et al. 2006, Jackson 2009, Powers et al. 2010, 2011). In this respect, it appears that maintaining a proper balance between radical production and removal is a vital physiological process in the body. The purpose of this chapter is first to briefly explain the main pathways in the human body, which lead to free radical production, and then to highlight the impact of free radical regulation in both cardiac and skeletal muscle tissues. It is these pathways upon which many of the proposed theories for antioxidant regulation occur through manipulation of training, environment, diet or supplementation of the diet with ingredients purported to favourably alter the cellular antioxidant milieu.

摘要

含有一个或多个未配对电子的原子或原子团被称为自由基,它通常是一种高反应性且不稳定的分子。这类自由基分子通常分为两组,分别被归类为活性氧和活性氮。这些自由基的稳定需要蛋白质、脂质和DNA提供电子,这往往会导致这些分子的降解和损伤。由于存在细胞损伤的可能性,最初有报道称体育锻炼会增加活性氧(ROS)的产生,这引发了诸多争议(迪拉德等人,1978年)。这项最初的研究并未揭示ROS的具体产生位置,但后来的研究表明收缩的骨骼肌是ROS的一个主要来源(戴维斯等人,1982年)。多年后,研究还发现收缩的肌肉也会产生一氧化氮(NO),它是活性氮的主要母体分子(巴伦和纳德勒,1994年),从那时起,许多结构严谨的综述文章证实了骨骼肌对ROS和活性氮产生的作用(鲍尔斯和杰克逊,2008年;杰克逊,2009年;鲍尔斯等人,2011年)。当氧或氮未被完全还原时,会形成最丰富的生物自由基,从而产生超氧化物([图片:见正文])和NO,本章稍后将更详细地解释这些过程。超氧化物母体分子随后可转化为其他“自由基”,即过氧化氢(HO)和羟基自由基(•OH)。体内一系列抗氧化系统(如过氧化氢酶、谷胱甘肽/硫醇调节)负责清除ROS,氧物种与抗氧化剂之间的平衡被称为“氧化还原状态”。如前所述,氧化还原状态失调会导致对关键生物分子如蛋白质、脂质(细胞膜是常见靶点)和DNA的自由基清除,这一过程会使它们受损并无法正常发挥功能。出于这些原因,20世纪80年代和90年代的早期理论让人认为ROS的产生主要是体育锻炼的负面结果。此外,越来越多的证据表明,许多临床情况如心脏病、肌萎缩侧索硬化症、炎症性肠病、糖尿病和衰老都是ROS产生过多和自由基损伤的结果(西耶斯,1985年;鲍尔斯和杰克逊,2008年;杰克逊,2009年;筒井等人,2011年)。然而,最近的观点开始强调这样一个事实,即氧和氮物种在许多细胞内机制的调节中都发挥着关键作用,并且对与肌肉适应相关的各种细胞信号通路也有显著贡献。例如,多项研究和综述文章强调,活性物种的可控产生有助于线粒体生物发生、血管生成、骨骼肌肥大和正常免疫功能(季等人,2006年;杰克逊,2009年;鲍尔斯等人,2010年、2011年)。在这方面,维持自由基产生与清除之间的适当平衡似乎是体内一个至关重要的生理过程。本章的目的首先是简要解释人体中导致自由基产生的主要途径,然后强调自由基调节对心脏和骨骼肌组织的影响。许多关于抗氧化剂调节的理论都是基于对训练、环境、饮食或通过在饮食中添加据称能有利地改变细胞抗氧化环境的成分进行操纵,而这些理论正是基于这些途径提出的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验