Song Huiwen, Pu Jun, Wang Lin, Wu Lihua, Xiao Jianmin, Liu Qigong, Chen Jun, Zhang Min, Liu Yang, Ni Mingke, Mo Jinggang, Zheng Yunliang, Wan Deli, Cai XiongJiu, Cao Yaping, Xiao Weiyi, Ye Lei, Tu Enyuan, Lin Zhihai, Wen Jianxin, Lu Xiaoling, He Jian, Peng Yi, Su Jing, Zhang Heng, Zhao Yongxiang, Lin Meihua, Zhang Zhiyong
a Department of Cardiology ; Affiliated Baoan Hospital of Southern Medical University ; Shenzhen , China.
Autophagy. 2015;11(8):1308-25. doi: 10.1080/15548627.2015.1060386.
Recent studies have shown that the phosphorylation and dephosphorylation of ULK1 and ATG13 are related to autophagy activity. Although ATG16L1 is absolutely required for autophagy induction by affecting the formation of autophagosomes, the post-translational modification of ATG16L1 remains elusive. Here, we explored the regulatory mechanism and role of ATG16L1 phosphorylation for autophagy induction in cardiomyocytes. We showed that ATG16L1 was a phosphoprotein, because phosphorylation of ATG16L1 was detected in rat cardiomyocytes during hypoxia/reoxygenation (H/R). We not only demonstrated that CSNK2 (casein kinase 2) phosphorylated ATG16L1, but also identified the highly conserved Ser139 as the critical phosphorylation residue for CSNK2. We further established that ATG16L1 associated with the ATG12-ATG5 complex in a Ser139 phosphorylation-dependent manner. In agreement with this finding, CSNK2 inhibitor disrupted the ATG12-ATG5-ATG16L1 complex. Importantly, phosphorylation of ATG16L1 on Ser139 was responsible for H/R-induced autophagy in cardiomyocytes, which protects cardiomyocytes from apoptosis. Conversely, we determined that wild-type PPP1 (protein phosphatase 1), but not the inactive mutant, associated with ATG16L1 and antagonized CSNK2-mediated phosphorylation of ATG16L1. Interestingly, one RVxF consensus site for PPP1 binding in the C-terminal tail of ATG16L1 was identified; mutation of this site disrupted its association with ATG16L1. Notably, CSNK2 also associated with PPP1, but ATG16L1 depletion impaired the interaction between CSNK2 and PPP1. Collectively, these data identify ATG16L1 as a bona fide physiological CSNK2 and PPP1 substrate, which reveals a novel molecular link from CSNK2 to activation of the autophagy-specific ATG12-ATG5-ATG16L1 complex and autophagy induction.
最近的研究表明,ULK1和ATG13的磷酸化与去磷酸化与自噬活性有关。尽管ATG16L1对于通过影响自噬体的形成来诱导自噬是绝对必需的,但其翻译后修饰仍不清楚。在这里,我们探讨了ATG16L1磷酸化在心肌细胞自噬诱导中的调控机制和作用。我们发现ATG16L1是一种磷蛋白,因为在缺氧/复氧(H/R)过程中,大鼠心肌细胞中检测到了ATG16L1的磷酸化。我们不仅证明了酪蛋白激酶2(CSNK2)使ATG16L1磷酸化,还确定了高度保守的丝氨酸139是CSNK2的关键磷酸化位点。我们进一步证实,ATG16L1以丝氨酸139磷酸化依赖的方式与ATG12-ATG5复合物结合。与此发现一致,CSNK2抑制剂破坏了ATG12-ATG5-ATG16L1复合物。重要的是,ATG16L1丝氨酸139位点的磷酸化导致了H/R诱导的心肌细胞自噬,从而保护心肌细胞免于凋亡。相反,我们确定野生型蛋白磷酸酶1(PPP1),而不是无活性的突变体,与ATG16L1结合并拮抗CSNK2介导的ATG16L1磷酸化。有趣的是,在ATG16L1的C末端尾巴中鉴定出一个用于PPP1结合的RVxF共有位点;该位点的突变破坏了其与ATG16L1的结合。值得注意的是,CSNK2也与PPP1结合,但ATG16L1的缺失损害了CSNK2与PPP1之间的相互作用。总体而言,这些数据确定ATG16L1是一种真正的生理性CSNK2和PPP1底物,揭示了从CSNK2到自噬特异性ATG12-ATG5-ATG16L1复合物激活和自噬诱导的新分子联系。