Suppr超能文献

用于早期轻度认知障碍识别的稀疏时间动态静息态功能连接网络。

Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification.

作者信息

Wee Chong-Yaw, Yang Sen, Yap Pew-Thian, Shen Dinggang

机构信息

Image Display, Enhancement, and Analysis (IDEA) Laboratory, Biomedical Research Imaging Center (BRIC) and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

Department of Computer Science and Engineering, Arizona State University, Tempe, AZ, USA.

出版信息

Brain Imaging Behav. 2016 Jun;10(2):342-56. doi: 10.1007/s11682-015-9408-2.

Abstract

In conventional resting-state functional MRI (R-fMRI) analysis, functional connectivity is assumed to be temporally stationary, overlooking neural activities or interactions that may happen within the scan duration. Dynamic changes of neural interactions can be reflected by variations of topology and correlation strength in temporally correlated functional connectivity networks. These connectivity networks may potentially capture subtle yet short neural connectivity disruptions induced by disease pathologies. Accordingly, we are motivated to utilize disrupted temporal network properties for improving control-patient classification performance. Specifically, a sliding window approach is firstly employed to generate a sequence of overlapping R-fMRI sub-series. Based on these sub-series, sliding window correlations, which characterize the neural interactions between brain regions, are then computed to construct a series of temporal networks. Individual estimation of these temporal networks using conventional network construction approaches fails to take into consideration intrinsic temporal smoothness among successive overlapping R-fMRI sub-series. To preserve temporal smoothness of R-fMRI sub-series, we suggest to jointly estimate the temporal networks by maximizing a penalized log likelihood using a fused sparse learning algorithm. This sparse learning algorithm encourages temporally correlated networks to have similar network topology and correlation strengths. We design a disease identification framework based on the estimated temporal networks, and group level network property differences and classification results demonstrate the importance of including temporally dynamic R-fMRI scan information to improve diagnosis accuracy of mild cognitive impairment patients.

摘要

在传统的静息态功能磁共振成像(R-fMRI)分析中,功能连接被假定为时间上静止的,忽略了在扫描期间可能发生的神经活动或相互作用。神经相互作用的动态变化可以通过时间相关功能连接网络中拓扑结构和相关强度的变化来反映。这些连接网络可能潜在地捕捉到由疾病病理引起的细微但短暂的神经连接中断。因此,我们有动力利用被破坏的时间网络特性来提高对照-患者分类性能。具体而言,首先采用滑动窗口方法生成一系列重叠的R-fMRI子序列。基于这些子序列,计算表征脑区之间神经相互作用的滑动窗口相关性,以构建一系列时间网络。使用传统网络构建方法对这些时间网络进行个体估计未能考虑连续重叠R-fMRI子序列之间的内在时间平滑性。为了保持R-fMRI子序列的时间平滑性,我们建议使用融合稀疏学习算法通过最大化惩罚对数似然来联合估计时间网络。这种稀疏学习算法鼓励时间相关的网络具有相似的网络拓扑结构和相关强度。我们基于估计的时间网络设计了一个疾病识别框架,组水平的网络特性差异和分类结果表明纳入时间动态R-fMRI扫描信息对于提高轻度认知障碍患者诊断准确性的重要性。

相似文献

1
Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification.
Brain Imaging Behav. 2016 Jun;10(2):342-56. doi: 10.1007/s11682-015-9408-2.
2
Sparse SPM: Group Sparse-dictionary learning in SPM framework for resting-state functional connectivity MRI analysis.
Neuroimage. 2016 Jan 15;125:1032-1045. doi: 10.1016/j.neuroimage.2015.10.081. Epub 2015 Oct 31.
3
Diagnosis of Autism Spectrum Disorders Using Temporally Distinct Resting-State Functional Connectivity Networks.
CNS Neurosci Ther. 2016 Mar;22(3):212-9. doi: 10.1111/cns.12499. Epub 2016 Jan 29.
4
Identification of MCI using optimal sparse MAR modeled effective connectivity networks.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):319-327. doi: 10.1007/978-3-642-40763-5_40.
5
Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification.
Hum Brain Mapp. 2017 Oct;38(10):5019-5034. doi: 10.1002/hbm.23711. Epub 2017 Jun 30.
6
Multivariate graph learning for detecting aberrant connectivity of dynamic brain networks in autism.
Med Image Anal. 2019 Aug;56:11-25. doi: 10.1016/j.media.2019.05.007. Epub 2019 May 25.
9
Brain connectivity hyper-network for MCI classification.
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):724-32. doi: 10.1007/978-3-319-10470-6_90.
10
Resting-state global functional connectivity as a biomarker of cognitive reserve in mild cognitive impairment.
Brain Imaging Behav. 2017 Apr;11(2):368-382. doi: 10.1007/s11682-016-9599-1.

引用本文的文献

1
Dynamically weighted graph neural network for detection of early mild cognitive impairment.
PLoS One. 2025 Jun 4;20(6):e0323894. doi: 10.1371/journal.pone.0323894. eCollection 2025.
2
A Narrative Review on Cognitive Impairment in Type 2 Diabetes: Global Trends and Diagnostic Approaches.
Biomedicines. 2025 Feb 14;13(2):473. doi: 10.3390/biomedicines13020473.
3
Multi-scale asynchronous correlation and 2D convolutional autoencoder for adolescent health risk prediction with limited fMRI data.
Front Comput Neurosci. 2024 Oct 15;18:1478193. doi: 10.3389/fncom.2024.1478193. eCollection 2024.
4
Minimum spanning tree analysis of unimpaired individuals at risk of Alzheimer's disease.
Brain Commun. 2024 Aug 20;6(5):fcae283. doi: 10.1093/braincomms/fcae283. eCollection 2024.
8
Classification of bipolar disorders using the multilayer modularity in dynamic minimum spanning tree from resting state fMRI.
Cogn Neurodyn. 2023 Dec;17(6):1609-1619. doi: 10.1007/s11571-022-09907-x. Epub 2022 Dec 3.
9
Constructing high-order functional networks based on hypergraph for diagnosis of autism spectrum disorders.
Front Neurosci. 2023 Aug 31;17:1257982. doi: 10.3389/fnins.2023.1257982. eCollection 2023.

本文引用的文献

1
Supervised Discriminative Group Sparse Representation for Mild Cognitive Impairment Diagnosis.
Neuroinformatics. 2015 Jul;13(3):277-95. doi: 10.1007/s12021-014-9241-6.
2
The joint graphical lasso for inverse covariance estimation across multiple classes.
J R Stat Soc Series B Stat Methodol. 2014 Mar;76(2):373-397. doi: 10.1111/rssb.12033.
3
Dynamic functional connectivity: promise, issues, and interpretations.
Neuroimage. 2013 Oct 15;80:360-78. doi: 10.1016/j.neuroimage.2013.05.079. Epub 2013 May 24.
4
Functional connectivity and brain activation: a synergistic approach.
Cereb Cortex. 2014 Oct;24(10):2619-29. doi: 10.1093/cercor/bht119. Epub 2013 May 3.
5
Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification.
Brain Struct Funct. 2014 Mar;219(2):641-56. doi: 10.1007/s00429-013-0524-8. Epub 2013 Mar 7.
6
EEG correlates of time-varying BOLD functional connectivity.
Neuroimage. 2013 May 15;72:227-36. doi: 10.1016/j.neuroimage.2013.01.049. Epub 2013 Jan 31.
7
Whole-brain functional networks in cognitively normal, mild cognitive impairment, and Alzheimer's disease.
PLoS One. 2013;8(1):e53922. doi: 10.1371/journal.pone.0053922. Epub 2013 Jan 15.
8
Resting state functional connectivity in preclinical Alzheimer's disease.
Biol Psychiatry. 2013 Sep 1;74(5):340-7. doi: 10.1016/j.biopsych.2012.11.028. Epub 2013 Jan 4.
9
Tracking whole-brain connectivity dynamics in the resting state.
Cereb Cortex. 2014 Mar;24(3):663-76. doi: 10.1093/cercor/bhs352. Epub 2012 Nov 11.
10
Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns.
Hum Brain Mapp. 2013 Dec;34(12):3411-25. doi: 10.1002/hbm.22156. Epub 2012 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验