Wee Chong-Yaw, Yang Sen, Yap Pew-Thian, Shen Dinggang
Image Display, Enhancement, and Analysis (IDEA) Laboratory, Biomedical Research Imaging Center (BRIC) and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
Department of Computer Science and Engineering, Arizona State University, Tempe, AZ, USA.
Brain Imaging Behav. 2016 Jun;10(2):342-56. doi: 10.1007/s11682-015-9408-2.
In conventional resting-state functional MRI (R-fMRI) analysis, functional connectivity is assumed to be temporally stationary, overlooking neural activities or interactions that may happen within the scan duration. Dynamic changes of neural interactions can be reflected by variations of topology and correlation strength in temporally correlated functional connectivity networks. These connectivity networks may potentially capture subtle yet short neural connectivity disruptions induced by disease pathologies. Accordingly, we are motivated to utilize disrupted temporal network properties for improving control-patient classification performance. Specifically, a sliding window approach is firstly employed to generate a sequence of overlapping R-fMRI sub-series. Based on these sub-series, sliding window correlations, which characterize the neural interactions between brain regions, are then computed to construct a series of temporal networks. Individual estimation of these temporal networks using conventional network construction approaches fails to take into consideration intrinsic temporal smoothness among successive overlapping R-fMRI sub-series. To preserve temporal smoothness of R-fMRI sub-series, we suggest to jointly estimate the temporal networks by maximizing a penalized log likelihood using a fused sparse learning algorithm. This sparse learning algorithm encourages temporally correlated networks to have similar network topology and correlation strengths. We design a disease identification framework based on the estimated temporal networks, and group level network property differences and classification results demonstrate the importance of including temporally dynamic R-fMRI scan information to improve diagnosis accuracy of mild cognitive impairment patients.
在传统的静息态功能磁共振成像(R-fMRI)分析中,功能连接被假定为时间上静止的,忽略了在扫描期间可能发生的神经活动或相互作用。神经相互作用的动态变化可以通过时间相关功能连接网络中拓扑结构和相关强度的变化来反映。这些连接网络可能潜在地捕捉到由疾病病理引起的细微但短暂的神经连接中断。因此,我们有动力利用被破坏的时间网络特性来提高对照-患者分类性能。具体而言,首先采用滑动窗口方法生成一系列重叠的R-fMRI子序列。基于这些子序列,计算表征脑区之间神经相互作用的滑动窗口相关性,以构建一系列时间网络。使用传统网络构建方法对这些时间网络进行个体估计未能考虑连续重叠R-fMRI子序列之间的内在时间平滑性。为了保持R-fMRI子序列的时间平滑性,我们建议使用融合稀疏学习算法通过最大化惩罚对数似然来联合估计时间网络。这种稀疏学习算法鼓励时间相关的网络具有相似的网络拓扑结构和相关强度。我们基于估计的时间网络设计了一个疾病识别框架,组水平的网络特性差异和分类结果表明纳入时间动态R-fMRI扫描信息对于提高轻度认知障碍患者诊断准确性的重要性。