Vangamudi Bhavatarini, Paul Thomas A, Shah Parantu K, Kost-Alimova Maria, Nottebaum Lisa, Shi Xi, Zhan Yanai, Leo Elisabetta, Mahadeshwar Harshad S, Protopopov Alexei, Futreal Andrew, Tieu Trang N, Peoples Mike, Heffernan Timothy P, Marszalek Joseph R, Toniatti Carlo, Petrocchi Alessia, Verhelle Dominique, Owen Dafydd R, Draetta Giulio, Jones Philip, Palmer Wylie S, Sharma Shikhar, Andersen Jannik N
Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX.
Pfizer Oncology Research Unit, La Jolla, CA.
Cancer Res. 2015 Sep 15;75(18):3865-3878. doi: 10.1158/0008-5472.CAN-14-3798. Epub 2015 Jul 2.
The SWI/SNF multisubunit complex modulates chromatin structure through the activity of two mutually exclusive catalytic subunits, SMARCA2 and SMARCA4, which both contain a bromodomain and an ATPase domain. Using RNAi, cancer-specific vulnerabilities have been identified in SWI/SNF-mutant tumors, including SMARCA4-deficient lung cancer; however, the contribution of conserved, druggable protein domains to this anticancer phenotype is unknown. Here, we functionally deconstruct the SMARCA2/4 paralog dependence of cancer cells using bioinformatics, genetic, and pharmacologic tools. We evaluate a selective SMARCA2/4 bromodomain inhibitor (PFI-3) and characterize its activity in chromatin-binding and cell-functional assays focusing on cells with altered SWI/SNF complex (e.g., lung, synovial sarcoma, leukemia, and rhabdoid tumors). We demonstrate that PFI-3 is a potent, cell-permeable probe capable of displacing ectopically expressed, GFP-tagged SMARCA2-bromodomain from chromatin, yet contrary to target knockdown, the inhibitor fails to display an antiproliferative phenotype. Mechanistically, the lack of pharmacologic efficacy is reconciled by the failure of bromodomain inhibition to displace endogenous, full-length SMARCA2 from chromatin as determined by in situ cell extraction, chromatin immunoprecipitation, and target gene expression studies. Furthermore, using inducible RNAi and cDNA complementation (bromodomain- and ATPase-dead constructs), we unequivocally identify the ATPase domain, and not the bromodomain of SMARCA2, as the relevant therapeutic target with the catalytic activity suppressing defined transcriptional programs. Taken together, our complementary genetic and pharmacologic studies exemplify a general strategy for multidomain protein drug-target validation and in case of SMARCA2/4 highlight the potential for drugging the more challenging helicase/ATPase domain to deliver on the promise of synthetic-lethality therapy.
SWI/SNF多亚基复合物通过两种互斥的催化亚基SMARCA2和SMARCA4的活性来调节染色质结构,这两个亚基都含有一个溴结构域和一个ATP酶结构域。利用RNA干扰技术,在SWI/SNF突变肿瘤中发现了癌症特异性的脆弱性,包括SMARCA4缺陷型肺癌;然而,保守的、可药物化的蛋白质结构域对这种抗癌表型的贡献尚不清楚。在这里,我们使用生物信息学、遗传学和药理学工具在功能上解构癌细胞对SMARCA2/4旁系同源物的依赖性。我们评估了一种选择性SMARCA2/4溴结构域抑制剂(PFI-3),并在聚焦于SWI/SNF复合物改变的细胞(如肺癌、滑膜肉瘤、白血病和横纹肌样肿瘤细胞)的染色质结合和细胞功能测定中表征其活性。我们证明PFI-3是一种有效的、可穿透细胞的探针,能够从染色质上取代异位表达的、绿色荧光蛋白标记的SMARCA2溴结构域,但与靶点敲低相反,该抑制剂未能表现出抗增殖表型。从机制上讲,通过原位细胞提取、染色质免疫沉淀和靶基因表达研究确定,溴结构域抑制未能从染色质上取代内源性全长SMARCA2,从而解释了缺乏药理疗效的原因。此外,使用诱导性RNA干扰和cDNA互补(溴结构域和ATP酶失活构建体),我们明确确定SMARCA2的ATP酶结构域而非溴结构域是相关治疗靶点,其催化活性抑制特定的转录程序。综上所述,我们互补性的遗传学和药理学研究例证了一种多结构域蛋白质药物靶点验证的通用策略,就SMARCA2/4而言,突出了靶向更具挑战性的解旋酶/ATP酶结构域以实现合成致死性治疗前景的潜力。