Suppr超能文献

炎症、营养供应和共生微生物群在肠道病原体感染中的作用。

The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection.

机构信息

Max von Pettenkofer Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany.

出版信息

Microbiol Spectr. 2015 Jun;3(3). doi: 10.1128/microbiolspec.MBP-0008-2014.

Abstract

The healthy human intestine is colonized by as many as 1014 bacteria belonging to more than 500 different species forming a microbial ecosystem of unsurpassed diversity, termed the microbiota. The microbiota's various bacterial members engage in a physiological network of cooperation and competition within several layers of complexity. Within the last 10 years, technological progress in the field of next-generation sequencing technologies has tremendously advanced our understanding of the wide variety of physiological and pathological processes that are influenced by the commensal microbiota (1, 2). An increasing number of human disease conditions, such as inflammatory bowel diseases (IBD), type 2 diabetes, obesity, allergies and colorectal cancer are linked with altered microbiota composition (3). Moreover, a clearer picture is emerging of the composition of the human microbiota in healthy individuals, its variability over time and between different persons and how the microbiota is shaped by environmental factors (i.e., diet) and the host's genetic background (4). A general feature of a normal, healthy gut microbiota can generate conditions in the gut that disfavor colonization of enteric pathogens. This is termed colonization-resistance (CR). Upon disturbance of the microbiota, CR can be transiently disrupted, and pathogens can gain the opportunity to grow to high levels. This disruption can be caused by exposure to antibiotics (5, 6), changes in diet (7, 8), application of probiotics and drugs (9), and a variety of diseases (3). Breakdown of CR can boost colonization by intrinsic pathogens or increase susceptibility to infections (10). One consequence of pathogen expansion is the triggering of inflammatory host responses and pathogen-mediated disease. Interestingly, human enteric pathogens are part of a small group of bacterial families that belong to the Proteobacteria: the Enterobacteriaceae (E. coli, Yersinia spp., Salmonella spp., Shigella spp.), the Vibrionaceae (Vibrio cholerae) and the Campylobacteriaceae (Campylobacter spp.). In general, members of these families (be it commensals or pathogens) only constitute a minority of the intestinal microbiota. However, proteobacterial "blooms" are a characteristic trait of an abnormal microbiota such as in the course of antibiotic therapy, dietary changes or inflammation (11). It has become clear that the gut microbiota not only plays a major role in priming and regulating mucosal and systemic immunity, but that the immune system also contributes to host control over microbiota composition. These two ways of mutual communication between the microbiota and the immune system were coined as "outside-in" and "inside-out," respectively (12). The significance of those interactions for human health is particularly evident in Crohn's disease (CD) and Ulcerative Colitis (UC). The symptoms of these recurrent, chronic types of gut inflammation are caused by an excessive immune response against one's own commensal microbiota (13). It is assumed that deregulated immune responses can be caused by a genetic predisposition, leading to, for example, the impairment of intestinal barrier function or disruption of mucosal T-cell homeostasis. In CD or UC patients, an abnormally composed microbiota, referred to as "dysbiosis," is commonly observed (discussed later). This is often characterized by an increased relative abundance of facultative anaerobic bacteria (e.g., Enterobacteriaeceae, Bacilli) and, at the same time, depletion of obligate anaerobic bacteria of the classes Bacteroidia and Clostridia. So far, it is unclear whether dysbiosis is a cause or a consequence of inflammatory bowel disease (IBD). In fact, both scenarios are equally conceivable. Recent work suggests that inflammatory immune responses in the gut (both IBD and pathogen-induced) can alter the gut luminal milieu in a way that favors dysbiosis (14). In this chapter, I present a survey on our current state of understanding of the characteristics and mechanisms underlying gut inflammation-associated dysbiosis. The role of dysbiosis in enteric infections and human IBD is discussed. In addition, I will focus on competition of enteric pathogens and the gut microbiota in the inflamed gut and the role of dysbiotic microbiota alterations (e.g., "Enterobacterial blooms" (11)) for the evolution of pathogenicity.

摘要

健康人体的肠道中定植着多达 1014 种细菌,属于 500 多种不同物种,形成了无与伦比的多样化微生物生态系统,称为微生物组。微生物组的各种细菌成员在几个复杂层次上进行着生理网络的合作与竞争。在过去的 10 年中,下一代测序技术领域的技术进步极大地提高了我们对受共生微生物组影响的各种生理和病理过程的理解(1,2)。越来越多的人类疾病状况,如炎症性肠病(IBD)、2 型糖尿病、肥胖、过敏和结直肠癌,与微生物组组成的改变有关(3)。此外,健康个体的人类微生物组的组成、随时间的变化、个体之间的差异以及环境因素(即饮食)和宿主遗传背景如何塑造微生物组的更清晰的画面正在出现(4)。正常、健康肠道微生物组的一个一般特征可以在肠道中产生不利于肠道病原体定植的条件。这称为定植抗性(CR)。当微生物组受到干扰时,CR 可能会暂时被破坏,病原体可能有机会大量生长。这种干扰可能是由于暴露于抗生素(5,6)、饮食变化(7,8)、益生菌和药物的应用(9)以及各种疾病(3)引起的。CR 的破坏会增加固有病原体的定植或增加感染易感性(10)。病原体扩张的一个后果是引发宿主炎症反应和病原体介导的疾病。有趣的是,人类肠道病原体是属于变形菌门的一小部分细菌家族的一部分:肠杆菌科(大肠杆菌、耶尔森氏菌属、沙门氏菌属、志贺氏菌属)、弧菌科(霍乱弧菌)和弯曲菌科(弯曲菌属)。一般来说,这些家族的成员(无论是共生菌还是病原体)仅构成肠道微生物组的一小部分。然而,变形菌“爆发”是抗生素治疗、饮食变化或炎症等异常微生物组的特征性特征(11)。很明显,肠道微生物组不仅在启动和调节黏膜和系统免疫方面发挥着主要作用,而且免疫系统也有助于宿主控制微生物组组成。这两种微生物组和免疫系统之间的相互交流方式分别被称为“外向”和“内向”(12)。这些相互作用对人类健康的意义在克罗恩病(CD)和溃疡性结肠炎(UC)中尤为明显。这些反复发作的慢性肠道炎症的症状是由对自身共生微生物组的过度免疫反应引起的(13)。人们认为,免疫反应的失调可能是由遗传易感性引起的,例如导致肠道屏障功能受损或黏膜 T 细胞稳态破坏。在 CD 或 UC 患者中,通常观察到异常组成的微生物组,称为“失调”(稍后讨论)。这通常表现为兼性厌氧菌(例如肠杆菌科、芽孢杆菌)的相对丰度增加,同时必需厌氧菌类杆菌和梭菌的丰度减少。到目前为止,尚不清楚失调是炎症性肠病(IBD)的原因还是后果。事实上,这两种情况同样可以想象。最近的工作表明,肠道中的炎症性免疫反应(无论是 IBD 还是病原体诱导的)都可以改变肠道腔环境,有利于失调(14)。在本章中,我将对我们目前对与肠道炎症相关的失调的特征和机制的理解进行调查。讨论了失调在肠道感染和人类 IBD 中的作用。此外,我将重点关注肠道病原体和肠道微生物组在炎症肠道中的竞争以及失调微生物组改变(例如,“肠杆菌爆发”(11))对致病性进化的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验