Suppr超能文献

CTFFIND4:从电子显微照片中快速准确地估计散焦量。

CTFFIND4: Fast and accurate defocus estimation from electron micrographs.

作者信息

Rohou Alexis, Grigorieff Nikolaus

机构信息

Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.

Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.

出版信息

J Struct Biol. 2015 Nov;192(2):216-21. doi: 10.1016/j.jsb.2015.08.008. Epub 2015 Aug 13.

Abstract

CTFFIND is a widely-used program for the estimation of objective lens defocus parameters from transmission electron micrographs. Defocus parameters are estimated by fitting a model of the microscope's contrast transfer function (CTF) to an image's amplitude spectrum. Here we describe modifications to the algorithm which make it significantly faster and more suitable for use with images collected using modern technologies such as dose fractionation and phase plates. We show that this new version preserves the accuracy of the original algorithm while allowing for higher throughput. We also describe a measure of the quality of the fit as a function of spatial frequency and suggest this can be used to define the highest resolution at which CTF oscillations were successfully modeled.

摘要

CTFFIND是一个广泛使用的程序,用于从透射电子显微镜图像中估计物镜散焦参数。通过将显微镜的对比度传递函数(CTF)模型拟合到图像的振幅谱来估计散焦参数。在这里,我们描述了对该算法的修改,使其显著更快,并且更适合与使用剂量分割和相位板等现代技术采集的图像一起使用。我们表明,这个新版本在保持原始算法准确性的同时,实现了更高的通量。我们还描述了作为空间频率函数的拟合质量度量,并建议可以用它来定义成功建模CTF振荡的最高分辨率。

相似文献

1
CTFFIND4: Fast and accurate defocus estimation from electron micrographs.
J Struct Biol. 2015 Nov;192(2):216-21. doi: 10.1016/j.jsb.2015.08.008. Epub 2015 Aug 13.
2
Visualization and quality assessment of the contrast transfer function estimation.
J Struct Biol. 2015 Nov;192(2):222-34. doi: 10.1016/j.jsb.2015.06.012. Epub 2015 Jun 12.
3
FASTDEF: fast defocus and astigmatism estimation for high-throughput transmission electron microscopy.
J Struct Biol. 2013 Feb;181(2):136-48. doi: 10.1016/j.jsb.2012.12.006. Epub 2012 Dec 20.
4
CTFFIND5 provides improved insight into quality, tilt, and thickness of TEM samples.
Elife. 2024 Dec 20;13:RP97227. doi: 10.7554/eLife.97227.
5
Fast, robust, and accurate determination of transmission electron microscopy contrast transfer function.
J Struct Biol. 2007 Nov;160(2):249-62. doi: 10.1016/j.jsb.2007.08.013. Epub 2007 Aug 29.
6
Determination of astigmatism in TEM images.
J Struct Biol. 2007 Jan;157(1):189-200. doi: 10.1016/j.jsb.2006.07.021. Epub 2006 Sep 14.
7
CTER-rapid estimation of CTF parameters with error assessment.
Ultramicroscopy. 2014 May;140:9-19. doi: 10.1016/j.ultramic.2014.01.009. Epub 2014 Feb 7.
8
ACE: automated CTF estimation.
Ultramicroscopy. 2005 Aug;104(1):8-29. doi: 10.1016/j.ultramic.2005.02.004. Epub 2005 Mar 23.
9
Accurate determination of local defocus and specimen tilt in electron microscopy.
J Struct Biol. 2003 Jun;142(3):334-47. doi: 10.1016/s1047-8477(03)00069-8.
10
Gctf: Real-time CTF determination and correction.
J Struct Biol. 2016 Jan;193(1):1-12. doi: 10.1016/j.jsb.2015.11.003. Epub 2015 Nov 19.

引用本文的文献

1
Affinity Maturation and Light-Chain-Mediated Paratope Diversification Anticipate Viral Evolution.
bioRxiv. 2025 Aug 28:2025.08.27.672735. doi: 10.1101/2025.08.27.672735.
2
On the self-assembly of αB-crystallin.
Soft Matter. 2025 Sep 2. doi: 10.1039/d5sm00684h.
3
Structural insights into the vitamin K-dependent γ-carboxylation of osteocalcin.
Cell Res. 2025 Sep 2. doi: 10.1038/s41422-025-01161-0.
4
A family of tubular pili from harmful algal bloom forming cyanobacterium Microcystis aeruginosa.
Nat Commun. 2025 Aug 29;16(1):8082. doi: 10.1038/s41467-025-63379-1.
6
KIDINS220 and InsP8 safeguard the stepwise regulation of phosphate exporter XPR1.
Mol Cell. 2025 Aug 19. doi: 10.1016/j.molcel.2025.08.003.
7
Structure-guided engineering of type I-F CASTs for targeted gene insertion in human cells.
Nat Commun. 2025 Aug 23;16(1):7891. doi: 10.1038/s41467-025-63164-0.
9
The HIV-1 nuclear export complex reveals the role of RNA in CRM1 cargo recognition.
Mol Cell. 2025 Aug 21;85(16):3108-3122.e7. doi: 10.1016/j.molcel.2025.07.015.
10
Structural basis for the dynamic regulation of mTORC1 by amino acids.
Nature. 2025 Aug 20. doi: 10.1038/s41586-025-09428-7.

本文引用的文献

1
Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy.
Ultramicroscopy. 2015 Nov;158:26-32. doi: 10.1016/j.ultramic.2015.05.017. Epub 2015 May 27.
2
CTF Challenge: Result summary.
J Struct Biol. 2015 Jun;190(3):348-59. doi: 10.1016/j.jsb.2015.04.003. Epub 2015 Apr 23.
3
A primer to single-particle cryo-electron microscopy.
Cell. 2015 Apr 23;161(3):438-449. doi: 10.1016/j.cell.2015.03.050.
4
Volta potential phase plate for in-focus phase contrast transmission electron microscopy.
Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15635-40. doi: 10.1073/pnas.1418377111. Epub 2014 Oct 20.
5
Structure of β-galactosidase at 3.2-Å resolution obtained by cryo-electron microscopy.
Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11709-14. doi: 10.1073/pnas.1402809111. Epub 2014 Jul 28.
6
CTER-rapid estimation of CTF parameters with error assessment.
Ultramicroscopy. 2014 May;140:9-19. doi: 10.1016/j.ultramic.2014.01.009. Epub 2014 Feb 7.
7
FASTDEF: fast defocus and astigmatism estimation for high-throughput transmission electron microscopy.
J Struct Biol. 2013 Feb;181(2):136-48. doi: 10.1016/j.jsb.2012.12.006. Epub 2012 Dec 20.
8
Determination of astigmatism in TEM images.
J Struct Biol. 2007 Jan;157(1):189-200. doi: 10.1016/j.jsb.2006.07.021. Epub 2006 Sep 14.
9
Electron energy filtering significantly improves amplitude contrast of frozen-hydrated protein at 300kV.
J Struct Biol. 2006 Dec;156(3):524-36. doi: 10.1016/j.jsb.2006.07.016. Epub 2006 Aug 15.
10
ACE: automated CTF estimation.
Ultramicroscopy. 2005 Aug;104(1):8-29. doi: 10.1016/j.ultramic.2005.02.004. Epub 2005 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验