Suppr超能文献

对青枯雷尔氏菌核心III型效应蛋白RipG7中正向选择位点的功能分配。

Functional assignment to positively selected sites in the core type III effector RipG7 from Ralstonia solanacearum.

作者信息

Wang Keke, Remigi Philippe, Anisimova Maria, Lonjon Fabien, Kars Ilona, Kajava Andrey, Li Chien-Hui, Cheng Chiu-Ping, Vailleau Fabienne, Genin Stéphane, Peeters Nemo

机构信息

INRA, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR441, CS52627 Chemin de Borde Rouge, 31326, Castanet-Tolosan, France.

CNRS, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR2594, CS52627 Chemin de Borde Rouge, 31326, Castanet-Tolosan, France.

出版信息

Mol Plant Pathol. 2016 May;17(4):553-64. doi: 10.1111/mpp.12302. Epub 2015 Dec 2.

Abstract

The soil-borne pathogen Ralstonia solanacearum causes bacterial wilt in a broad range of plants. The main virulence determinants of R. solanacearum are the type III secretion system (T3SS) and its associated type III effectors (T3Es), translocated into the host cells. Of the conserved T3Es among R. solanacearum strains, the Fbox protein RipG7 is required for R. solanacearum pathogenesis on Medicago truncatula. In this work, we describe the natural ripG7 variability existing in the R. solanacearum species complex. We show that eight representative ripG7 orthologues have different contributions to pathogenicity on M. truncatula: only ripG7 from Asian or African strains can complement the absence of ripG7 in GMI1000 (Asian reference strain). Nonetheless, RipG7 proteins from American and Indonesian strains can still interact with M. truncatula SKP1-like/MSKa protein, essential for the function of RipG7 in virulence. This indicates that the absence of complementation is most likely a result of the variability in the leucine-rich repeat (LRR) domain of RipG7. We identified 11 sites under positive selection in the LRR domains of RipG7. By studying the functional impact of these 11 sites, we show the contribution of five positively selected sites for the function of RipG7CMR15 in M. truncatula colonization. This work reveals the genetic and functional variation of the essential core T3E RipG7 from R. solanacearum. This analysis is the first of its kind on an essential disease-controlling T3E, and sheds light on the co-evolutionary arms race between the bacterium and its hosts.

摘要

土壤传播病原菌青枯雷尔氏菌会在多种植物中引发青枯病。青枯雷尔氏菌的主要毒力决定因素是III型分泌系统(T3SS)及其相关的III型效应子(T3Es),这些效应子会转移到宿主细胞中。在青枯雷尔氏菌菌株中保守的T3Es中,Fbox蛋白RipG7是青枯雷尔氏菌在蒺藜苜蓿上致病所必需的。在这项研究中,我们描述了青枯雷尔氏菌物种复合体中存在的ripG7自然变异。我们发现,八个具有代表性的ripG7直系同源物对蒺藜苜蓿的致病性有不同贡献:只有来自亚洲或非洲菌株的ripG7能够弥补GMI1000(亚洲参考菌株)中ripG7的缺失。然而,来自美国和印度尼西亚菌株的RipG7蛋白仍能与蒺藜苜蓿SKP1样/MSKa蛋白相互作用,该蛋白对RipG7的毒力功能至关重要。这表明无法互补很可能是RipG7富含亮氨酸重复序列(LRR)结构域变异的结果。我们在RipG7的LRR结构域中鉴定出11个正选择位点。通过研究这11个位点的功能影响,我们展示了五个正选择位点对RipG7CMR15在蒺藜苜蓿定殖中的功能贡献。这项研究揭示了青枯雷尔氏菌核心必需T3E RipG7的遗传和功能变异。这是对一种必需的疾病控制T3E的首次此类分析,为细菌与其宿主之间的共同进化军备竞赛提供了线索。

相似文献

1
Functional assignment to positively selected sites in the core type III effector RipG7 from Ralstonia solanacearum.
Mol Plant Pathol. 2016 May;17(4):553-64. doi: 10.1111/mpp.12302. Epub 2015 Dec 2.
3
Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants.
Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14620-5. doi: 10.1073/pnas.0509393103. Epub 2006 Sep 18.
10
Identification of RipAZ1 as an avirulence determinant of Ralstonia solanacearum in Solanum americanum.
Mol Plant Pathol. 2021 Mar;22(3):317-333. doi: 10.1111/mpp.13030. Epub 2021 Jan 3.

引用本文的文献

2
Comprehensive Analysis Reveals the Genetic and Pathogenic Diversity of Species Complex and Benefits Its Taxonomic Classification.
Front Microbiol. 2022 May 6;13:854792. doi: 10.3389/fmicb.2022.854792. eCollection 2022.
3
Complete genome sequence analysis of the peanut pathogen Ralstonia solanacearum strain Rs-P.362200.
BMC Microbiol. 2021 Apr 19;21(1):118. doi: 10.1186/s12866-021-02157-7.
5
The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions.
Mol Plant Pathol. 2020 Oct;21(10):1377-1388. doi: 10.1111/mpp.12977. Epub 2020 Aug 8.
6
A quick and efficient hydroponic potato infection method for evaluating potato resistance and virulence.
Plant Methods. 2019 Nov 30;15:145. doi: 10.1186/s13007-019-0530-9. eCollection 2019.
7
Pangenomic type III effector database of the plant pathogenic spp.
PeerJ. 2019 Aug 6;7:e7346. doi: 10.7717/peerj.7346. eCollection 2019.
8
Complete Genome Sequence of Sequevar 14M Strain HA4-1 Reveals Novel Type III Effectors Acquired Through Horizontal Gene Transfer.
Front Microbiol. 2019 Aug 14;10:1893. doi: 10.3389/fmicb.2019.01893. eCollection 2019.

本文引用的文献

2
Recognition and activation domains contribute to allele-specific responses of an Arabidopsis NLR receptor to an oomycete effector protein.
PLoS Pathog. 2015 Feb 11;11(2):e1004665. doi: 10.1371/journal.ppat.1004665. eCollection 2015 Feb.
3
FLS2-BAK1 extracellular domain interaction sites required for defense signaling activation.
PLoS One. 2014 Oct 30;9(10):e111185. doi: 10.1371/journal.pone.0111185. eCollection 2014.
5
Evolution of the F-box gene family in Euarchontoglires: gene number variation and selection patterns.
PLoS One. 2014 Apr 11;9(4):e94899. doi: 10.1371/journal.pone.0094899. eCollection 2014.
6
Effector specialization in a lineage of the Irish potato famine pathogen.
Science. 2014 Jan 31;343(6170):552-5. doi: 10.1126/science.1246300.
10
Graph-based modeling of tandem repeats improves global multiple sequence alignment.
Nucleic Acids Res. 2013 Sep;41(17):e162. doi: 10.1093/nar/gkt628. Epub 2013 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验