Orr Mona W, Donaldson Gregory P, Severin Geoffrey B, Wang Jingxin, Sintim Herman O, Waters Christopher M, Lee Vincent T
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742;
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742;
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):E5048-57. doi: 10.1073/pnas.1507245112. Epub 2015 Aug 24.
The bacterial second messenger cyclic di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. Cyclic-di-GMP is synthesized by diguanylate cyclases (DGCs). Phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), which is then hydrolyzed to two GMP molecules by yet unidentified enzymes termed PDE-Bs. We show that pGpG inhibits a PDE-A from Pseudomonas aeruginosa. In a dual DGC and PDE-A reaction, excess pGpG extends the half-life of c-di-GMP, indicating that removal of pGpG is critical for c-di-GMP homeostasis. Thus, we sought to identify the PDE-B enzyme(s) responsible for pGpG degradation. A differential radial capillary action of ligand assay-based screen for pGpG binding proteins identified oligoribonuclease (Orn), an exoribonuclease that hydrolyzes two- to five-nucleotide-long RNAs. Purified Orn rapidly converts pGpG into GMP. To determine whether Orn is the primary enzyme responsible for degrading pGpG, we assayed cell lysates of WT and ∆orn strains of P. aeruginosa PA14 for pGpG stability. The lysates from ∆orn showed 25-fold decrease in pGpG hydrolysis. Complementation with WT, but not active site mutants, restored hydrolysis. Accumulation of pGpG in the ∆orn strain could inhibit PDE-As, increasing c-di-GMP concentration. In support, we observed increased transcription from the c-di-GMP-regulated pel promoter. Additionally, the c-di-GMP-governed auto-aggregation and biofilm phenotypes were elevated in the ∆orn strain in a pel-dependent manner. Finally, we directly detect elevated pGpG and c-di-GMP in the ∆orn strain. Thus, we identified that Orn serves as the primary PDE-B enzyme that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway.
细菌第二信使环二鸟苷酸(c-di-GMP)控制生物膜形成以及其他与致病机制相关的表型。环二鸟苷酸由双鸟苷酸环化酶(DGCs)合成。磷酸二酯酶(PDE-As)通过将c-di-GMP线性化为5'-磷酸鸟苷酰基-(3',5')-鸟苷(pGpG)来终止信号传导,然后pGpG被一种尚未鉴定的称为PDE-Bs的酶水解为两个GMP分子。我们发现pGpG抑制铜绿假单胞菌的一种PDE-A。在双DGC和PDE-A反应中,过量的pGpG延长了c-di-GMP的半衰期,这表明去除pGpG对c-di-GMP的稳态至关重要。因此,我们试图鉴定负责pGpG降解的PDE-B酶。基于配体测定的筛选pGpG结合蛋白的差异径向毛细管作用鉴定出寡核糖核酸酶(Orn),一种能水解两到五个核苷酸长RNA的外切核糖核酸酶。纯化的Orn能迅速将pGpG转化为GMP。为了确定Orn是否是负责降解pGpG的主要酶,我们检测了铜绿假单胞菌PA14野生型和∆orn菌株的细胞裂解物中pGpG的稳定性。∆orn菌株的裂解物中pGpG水解降低了25倍。用野生型而非活性位点突变体进行互补可恢复水解。∆orn菌株中pGpG的积累可抑制PDE-As,增加c-di-GMP浓度。作为支持,我们观察到c-di-GMP调控的pel启动子的转录增加。此外,∆orn菌株中c-di-GMP控制的自动聚集和生物膜表型以pel依赖的方式升高。最后,我们直接检测到∆orn菌株中pGpG和c-di-GMP升高。因此,我们确定Orn作为去除pGpG的主要PDE-B酶,这是完成c-di-GMP降解途径最后一步所必需的。