Suppr超能文献

寡核糖核酸酶是铜绿假单胞菌中参与环二鸟苷酸周转所必需的对pGpG进行降解的主要酶。

Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover.

作者信息

Orr Mona W, Donaldson Gregory P, Severin Geoffrey B, Wang Jingxin, Sintim Herman O, Waters Christopher M, Lee Vincent T

机构信息

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742;

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742;

出版信息

Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):E5048-57. doi: 10.1073/pnas.1507245112. Epub 2015 Aug 24.

Abstract

The bacterial second messenger cyclic di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. Cyclic-di-GMP is synthesized by diguanylate cyclases (DGCs). Phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), which is then hydrolyzed to two GMP molecules by yet unidentified enzymes termed PDE-Bs. We show that pGpG inhibits a PDE-A from Pseudomonas aeruginosa. In a dual DGC and PDE-A reaction, excess pGpG extends the half-life of c-di-GMP, indicating that removal of pGpG is critical for c-di-GMP homeostasis. Thus, we sought to identify the PDE-B enzyme(s) responsible for pGpG degradation. A differential radial capillary action of ligand assay-based screen for pGpG binding proteins identified oligoribonuclease (Orn), an exoribonuclease that hydrolyzes two- to five-nucleotide-long RNAs. Purified Orn rapidly converts pGpG into GMP. To determine whether Orn is the primary enzyme responsible for degrading pGpG, we assayed cell lysates of WT and ∆orn strains of P. aeruginosa PA14 for pGpG stability. The lysates from ∆orn showed 25-fold decrease in pGpG hydrolysis. Complementation with WT, but not active site mutants, restored hydrolysis. Accumulation of pGpG in the ∆orn strain could inhibit PDE-As, increasing c-di-GMP concentration. In support, we observed increased transcription from the c-di-GMP-regulated pel promoter. Additionally, the c-di-GMP-governed auto-aggregation and biofilm phenotypes were elevated in the ∆orn strain in a pel-dependent manner. Finally, we directly detect elevated pGpG and c-di-GMP in the ∆orn strain. Thus, we identified that Orn serves as the primary PDE-B enzyme that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway.

摘要

细菌第二信使环二鸟苷酸(c-di-GMP)控制生物膜形成以及其他与致病机制相关的表型。环二鸟苷酸由双鸟苷酸环化酶(DGCs)合成。磷酸二酯酶(PDE-As)通过将c-di-GMP线性化为5'-磷酸鸟苷酰基-(3',5')-鸟苷(pGpG)来终止信号传导,然后pGpG被一种尚未鉴定的称为PDE-Bs的酶水解为两个GMP分子。我们发现pGpG抑制铜绿假单胞菌的一种PDE-A。在双DGC和PDE-A反应中,过量的pGpG延长了c-di-GMP的半衰期,这表明去除pGpG对c-di-GMP的稳态至关重要。因此,我们试图鉴定负责pGpG降解的PDE-B酶。基于配体测定的筛选pGpG结合蛋白的差异径向毛细管作用鉴定出寡核糖核酸酶(Orn),一种能水解两到五个核苷酸长RNA的外切核糖核酸酶。纯化的Orn能迅速将pGpG转化为GMP。为了确定Orn是否是负责降解pGpG的主要酶,我们检测了铜绿假单胞菌PA14野生型和∆orn菌株的细胞裂解物中pGpG的稳定性。∆orn菌株的裂解物中pGpG水解降低了25倍。用野生型而非活性位点突变体进行互补可恢复水解。∆orn菌株中pGpG的积累可抑制PDE-As,增加c-di-GMP浓度。作为支持,我们观察到c-di-GMP调控的pel启动子的转录增加。此外,∆orn菌株中c-di-GMP控制的自动聚集和生物膜表型以pel依赖的方式升高。最后,我们直接检测到∆orn菌株中pGpG和c-di-GMP升高。因此,我们确定Orn作为去除pGpG的主要PDE-B酶,这是完成c-di-GMP降解途径最后一步所必需的。

相似文献

1
Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):E5048-57. doi: 10.1073/pnas.1507245112. Epub 2015 Aug 24.
2
Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11359-64. doi: 10.1073/pnas.1421450112. Epub 2015 Aug 24.
3
A Subset of Exoribonucleases Serve as Degradative Enzymes for pGpG in c-di-GMP Signaling.
J Bacteriol. 2018 Nov 26;200(24). doi: 10.1128/JB.00300-18. Print 2018 Dec 15.
4
Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence.
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2839-44. doi: 10.1073/pnas.0511090103. Epub 2006 Feb 13.
5
A pGpG-specific phosphodiesterase regulates cyclic di-GMP signaling in Vibrio cholerae.
J Biol Chem. 2022 Mar;298(3):101626. doi: 10.1016/j.jbc.2022.101626. Epub 2022 Jan 21.
8
Structural investigation and gene deletion studies of mycobacterial oligoribonuclease reveal modulation of c-di-GMP-mediated phenotypes.
Int J Biol Macromol. 2022 Dec 31;223(Pt A):161-172. doi: 10.1016/j.ijbiomac.2022.11.029. Epub 2022 Nov 8.
10
Oligoribonuclease is required for the type III secretion system and pathogenesis of Pseudomonas aeruginosa.
Microbiol Res. 2016 Jul-Aug;188-189:90-96. doi: 10.1016/j.micres.2016.05.002. Epub 2016 May 4.

引用本文的文献

3
Harnessing hypoxia: bacterial adaptation and chronic infection in cystic fibrosis.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf018.
4
Distinct transcriptome and traits of freshly dispersed cells.
mSphere. 2024 Dec 19;9(12):e0088424. doi: 10.1128/msphere.00884-24. Epub 2024 Nov 27.
5
Diribonuclease activity eliminates toxic diribonucleotide accumulation.
Cell Rep. 2024 Sep 24;43(9):114759. doi: 10.1016/j.celrep.2024.114759. Epub 2024 Sep 13.
6
Structural and functional investigation of the DHH/DHHA1 family proteins in Deinococcus radiodurans.
Nucleic Acids Res. 2024 Jul 8;52(12):7142-7157. doi: 10.1093/nar/gkae451.
7
Environmental purines decrease Pseudomonas aeruginosa biofilm formation by disrupting c-di-GMP metabolism.
Cell Rep. 2024 May 28;43(5):114154. doi: 10.1016/j.celrep.2024.114154. Epub 2024 Apr 25.
8
pGpG-signaling regulates virulence and global transcriptomic targets in .
bioRxiv. 2024 Jan 14:2024.01.12.575434. doi: 10.1101/2024.01.12.575434.
9
Oligoribonuclease mediates high adaptability of P. aeruginosa through metabolic conversion.
BMC Microbiol. 2024 Jan 19;24(1):25. doi: 10.1186/s12866-023-03175-3.
10
FlhF affects the subcellular clustering of WspR through HsbR in .
Appl Environ Microbiol. 2024 Jan 24;90(1):e0154823. doi: 10.1128/aem.01548-23. Epub 2023 Dec 19.

本文引用的文献

1
GEMM-I riboswitches from Geobacter sense the bacterial second messenger cyclic AMP-GMP.
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5383-8. doi: 10.1073/pnas.1419328112. Epub 2015 Apr 6.
2
Identification and characterization of phosphodiesterases that specifically degrade 3'3'-cyclic GMP-AMP.
Cell Res. 2015 May;25(5):539-50. doi: 10.1038/cr.2015.40. Epub 2015 Apr 3.
3
An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E747-56. doi: 10.1073/pnas.1416485112. Epub 2015 Jan 12.
7
Functional characterization of core components of the Bacillus subtilis cyclic-di-GMP signaling pathway.
J Bacteriol. 2013 Nov;195(21):4782-92. doi: 10.1128/JB.00373-13. Epub 2013 Jul 26.
8
Cyclic di-AMP: another second messenger enters the fray.
Nat Rev Microbiol. 2013 Aug;11(8):513-24. doi: 10.1038/nrmicro3069. Epub 2013 Jul 1.
9
Systematic identification of conserved bacterial c-di-AMP receptor proteins.
Proc Natl Acad Sci U S A. 2013 May 28;110(22):9084-9. doi: 10.1073/pnas.1300595110. Epub 2013 May 13.
10
Cyclic di-GMP: the first 25 years of a universal bacterial second messenger.
Microbiol Mol Biol Rev. 2013 Mar;77(1):1-52. doi: 10.1128/MMBR.00043-12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验