Checco James W, Lee Erinna F, Evangelista Marco, Sleebs Nerida J, Rogers Kelly, Pettikiriarachchi Anne, Kershaw Nadia J, Eddinger Geoffrey A, Belair David G, Wilson Julia L, Eller Chelcie H, Raines Ronald T, Murphy William L, Smith Brian J, Gellman Samuel H, Fairlie W Douglas
The Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria 3052, Australia.
Department of Medical Biology, University of Melbourne , Parkville, Victoria 3010, Australia.
J Am Chem Soc. 2015 Sep 9;137(35):11365-75. doi: 10.1021/jacs.5b05896. Epub 2015 Aug 28.
Peptides can be developed as effective antagonists of protein-protein interactions, but conventional peptides (i.e., oligomers of l-α-amino acids) suffer from significant limitations in vivo. Short half-lives due to rapid proteolytic degradation and an inability to cross cell membranes often preclude biological applications of peptides. Oligomers that contain both α- and β-amino acid residues ("α/β-peptides") manifest decreased susceptibility to proteolytic degradation, and when properly designed these unnatural oligomers can mimic the protein-recognition properties of analogous "α-peptides". This report documents an extension of the α/β-peptide approach to target intracellular protein-protein interactions. Specifically, we have generated α/β-peptides based on a "stapled" Bim BH3 α-peptide, which contains a hydrocarbon cross-link to enhance α-helix stability. We show that a stapled α/β-peptide can structurally and functionally mimic the parent stapled α-peptide in its ability to enter certain types of cells and block protein-protein interactions associated with apoptotic signaling. However, the α/β-peptide is nearly 100-fold more resistant to proteolysis than is the parent stapled α-peptide. These results show that backbone modification, a strategy that has received relatively little attention in terms of peptide engineering for biomedical applications, can be combined with more commonly deployed peripheral modifications such as side chain cross-linking to produce synergistic benefits.
肽可以被开发成为蛋白质-蛋白质相互作用的有效拮抗剂,但传统肽(即L-α-氨基酸的寡聚物)在体内存在显著局限性。由于蛋白水解快速降解导致的短半衰期以及无法穿过细胞膜,常常阻碍了肽的生物学应用。同时包含α-和β-氨基酸残基的寡聚物(“α/β-肽”)对蛋白水解降解的敏感性降低,并且经过合理设计后,这些非天然寡聚物能够模拟类似“α-肽”的蛋白质识别特性。本报告记录了α/β-肽方法在靶向细胞内蛋白质-蛋白质相互作用方面的拓展。具体而言,我们基于一种“订书钉”式Bim BH3 α-肽生成了α/β-肽,该α-肽含有一个烃交联以增强α-螺旋稳定性。我们表明,一种订书钉式α/β-肽在进入某些类型细胞并阻断与凋亡信号相关的蛋白质-蛋白质相互作用的能力方面,在结构和功能上能够模拟亲本订书钉式α-肽。然而,α/β-肽对蛋白水解的抗性比亲本订书钉式α-肽高近100倍。这些结果表明,主链修饰(在生物医学应用的肽工程方面相对较少受到关注的一种策略)可以与更常用的外周修饰(如侧链交联)相结合,以产生协同效益。