Suppr超能文献

RIG-I信号通路对于乙型流感病毒诱导的快速干扰素基因表达至关重要。

RIG-I Signaling Is Essential for Influenza B Virus-Induced Rapid Interferon Gene Expression.

作者信息

Mäkelä Sanna M, Österlund Pamela, Westenius Veera, Latvala Sinikka, Diamond Michael S, Gale Michael, Julkunen Ilkka

机构信息

Viral Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland

Viral Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland.

出版信息

J Virol. 2015 Dec;89(23):12014-25. doi: 10.1128/JVI.01576-15. Epub 2015 Sep 16.

Abstract

UNLABELLED

Influenza B virus causes annual epidemics and, along with influenza A virus, accounts for substantial disease and economic burden throughout the world. Influenza B virus infects only humans and some marine mammals and is not responsible for pandemics, possibly due to a very low frequency of reassortment and a lower evolutionary rate than that of influenza A virus. Influenza B virus has been less studied than influenza A virus, and thus, a comparison of influenza A and B virus infection mechanisms may provide new insight into virus-host interactions. Here we analyzed the early events in influenza B virus infection and interferon (IFN) gene expression in human monocyte-derived macrophages and dendritic cells. We show that influenza B virus induces IFN regulatory factor 3 (IRF3) activation and IFN-λ1 gene expression with faster kinetics than does influenza A virus, without a requirement for viral protein synthesis or replication. Influenza B virus-induced activation of IRF3 required the fusion of viral and endosomal membranes, and nuclear accumulation of IRF3 and viral NP occurred concurrently. In comparison, immediate early IRF3 activation was not observed in influenza A virus-infected macrophages. Experiments with RIG-I-, MDA5-, and RIG-I/MDA5-deficient mouse fibroblasts showed that RIG-I is the critical pattern recognition receptor needed for the influenza B virus-induced activation of IRF3. Our results show that innate immune mechanisms are activated immediately after influenza B virus entry through the endocytic pathway, whereas influenza A virus avoids early IRF3 activation and IFN gene induction.

IMPORTANCE

Recently, a great deal of interest has been paid to identifying the ligands for RIG-I under conditions of natural infection, as many previous studies have been based on transfection of cells with different types of viral or synthetic RNA structures. We shed light on this question by analyzing the earliest step in innate immune recognition of influenza B virus by human macrophages. We show that influenza B virus induces IRF3 activation, leading to IFN gene expression after viral RNPs (vRNPs) are released into the cytosol and are recognized by RIG-I receptor, meaning that the incoming influenza B virus is already able to activate IFN gene expression. In contrast, influenza A (H3N2) virus failed to activate IRF3 at very early times of infection, suggesting that there are differences in innate immune recognition between influenza A and B viruses.

摘要

未标记

乙型流感病毒每年都会引发疫情,与甲型流感病毒一起,在全球范围内造成了巨大的疾病负担和经济负担。乙型流感病毒仅感染人类和一些海洋哺乳动物,不会引发大流行,这可能是由于其基因重配频率极低,且进化速率低于甲型流感病毒。与甲型流感病毒相比,乙型流感病毒的研究较少,因此,比较甲型和乙型流感病毒的感染机制可能会为病毒-宿主相互作用提供新的见解。在这里,我们分析了乙型流感病毒感染人类单核细胞衍生的巨噬细胞和树突状细胞的早期事件以及干扰素(IFN)基因表达。我们发现,乙型流感病毒诱导干扰素调节因子3(IRF3)激活和IFN-λ1基因表达的动力学比甲型流感病毒更快,且无需病毒蛋白合成或复制。乙型流感病毒诱导的IRF3激活需要病毒膜与内体膜融合,并且IRF3和病毒核蛋白(NP)的核积累同时发生。相比之下,在甲型流感病毒感染的巨噬细胞中未观察到早期IRF3激活。对RIG-I、MDA5和RIG-I/MDA5缺陷型小鼠成纤维细胞的实验表明,RIG-I是乙型流感病毒诱导IRF3激活所需的关键模式识别受体。我们的结果表明,在乙型流感病毒通过内吞途径进入后,先天免疫机制立即被激活,而甲型流感病毒则避免早期IRF3激活和IFN基因诱导。

重要性

最近,人们对在自然感染条件下识别RIG-I的配体产生了浓厚兴趣,因为许多先前的研究都是基于用不同类型的病毒或合成RNA结构转染细胞。通过分析人类巨噬细胞对乙型流感病毒先天免疫识别的最早步骤,我们阐明了这个问题。我们发现,乙型流感病毒诱导IRF3激活,导致病毒核糖核蛋白(vRNP)释放到细胞质中并被RIG-I受体识别后IFN基因表达,这意味着进入的乙型流感病毒已经能够激活IFN基因表达。相比之下,甲型(H3N2)流感病毒在感染的早期未能激活IRF3,这表明甲型和乙型流感病毒在先天免疫识别方面存在差异。

相似文献

1
RIG-I Signaling Is Essential for Influenza B Virus-Induced Rapid Interferon Gene Expression.
J Virol. 2015 Dec;89(23):12014-25. doi: 10.1128/JVI.01576-15. Epub 2015 Sep 16.
8
Interactions between the influenza A virus RNA polymerase components and retinoic acid-inducible gene I.
J Virol. 2014 Sep;88(18):10432-47. doi: 10.1128/JVI.01383-14. Epub 2014 Jun 18.
10
Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity.
J Virol. 2008 Jan;82(1):335-45. doi: 10.1128/JVI.01080-07. Epub 2007 Oct 17.

引用本文的文献

1
Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy.
Signal Transduct Target Ther. 2025 Mar 19;10(1):90. doi: 10.1038/s41392-025-02174-2.
2
Influenza A virus transcription generates capped cRNAs that activate RIG-I.
bioRxiv. 2024 Dec 3:2024.11.12.623191. doi: 10.1101/2024.11.12.623191.
3
CaMKII-dependent non-canonical RIG-I pathway promotes influenza virus propagation in the acute-phase of infection.
mBio. 2025 Jan 8;16(1):e0008724. doi: 10.1128/mbio.00087-24. Epub 2024 Nov 27.
4
Differential interferon responses to influenza A and B viruses in primary ferret respiratory epithelial cells.
J Virol. 2024 Feb 20;98(2):e0149423. doi: 10.1128/jvi.01494-23. Epub 2024 Jan 31.
6
Identification of two novel papillomaviruses in belugas.
Front Microbiol. 2023 Jul 26;14:1165839. doi: 10.3389/fmicb.2023.1165839. eCollection 2023.
7
K63-linked polyubiquitination of LGP2 by Riplet regulates RIG-I-dependent innate immune response.
EMBO Rep. 2023 Feb 6;24(2):e54844. doi: 10.15252/embr.202254844. Epub 2022 Dec 14.
8
DDX58 Is Associated With Susceptibility to Severe Influenza Virus Infection in Children and Adolescents.
J Infect Dis. 2022 Nov 28;226(11):2030-2036. doi: 10.1093/infdis/jiac350.
9
Filovirus VP24 Proteins Differentially Regulate RIG-I and MDA5-Dependent Type I and III Interferon Promoter Activation.
Front Immunol. 2022 Jan 5;12:694105. doi: 10.3389/fimmu.2021.694105. eCollection 2021.
10
Development and Effects of Influenza Antiviral Drugs.
Molecules. 2021 Feb 4;26(4):810. doi: 10.3390/molecules26040810.

本文引用的文献

1
Influenza A Virus Panhandle Structure Is Directly Involved in RIG-I Activation and Interferon Induction.
J Virol. 2015 Jun;89(11):6067-79. doi: 10.1128/JVI.00232-15. Epub 2015 Mar 25.
2
Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I.
Cell Host Microbe. 2015 Mar 11;17(3):309-319. doi: 10.1016/j.chom.2015.01.005. Epub 2015 Feb 19.
3
Functions of the influenza A virus NS1 protein in antiviral defense.
Curr Opin Virol. 2015 Jun;12:1-6. doi: 10.1016/j.coviro.2015.01.007. Epub 2015 Jan 29.
5
At the centre: influenza A virus ribonucleoproteins.
Nat Rev Microbiol. 2015 Jan;13(1):28-41. doi: 10.1038/nrmicro3367. Epub 2014 Nov 24.
7
TLR ligands upregulate RIG-I expression in human plasmacytoid dendritic cells in a type I IFN-independent manner.
Immunol Cell Biol. 2014 Sep;92(8):671-8. doi: 10.1038/icb.2014.38. Epub 2014 May 20.
9
Trafficking of endosomal Toll-like receptors.
Trends Cell Biol. 2014 Jun;24(6):360-9. doi: 10.1016/j.tcb.2013.12.002. Epub 2014 Jan 15.
10
Structural insights into the membrane fusion mechanism mediated by influenza virus hemagglutinin.
Biochemistry. 2014 Feb 11;53(5):846-54. doi: 10.1021/bi401525h. Epub 2014 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验