Suppr超能文献

人类的核苷酸切除修复

Nucleotide excision repair in humans.

作者信息

Spivak Graciela

机构信息

Department of Biology, Stanford University, Stanford, CA 94305-5020,USA.

出版信息

DNA Repair (Amst). 2015 Dec;36:13-18. doi: 10.1016/j.dnarep.2015.09.003. Epub 2015 Sep 10.

Abstract

The demonstration of DNA damage excision and repair replication by Setlow, Howard-Flanders, Hanawalt and their colleagues in the early 1960s, constituted the discovery of the ubiquitous pathway of nucleotide excision repair (NER). The serial steps in NER are similar in organisms from unicellular bacteria to complex mammals and plants, and involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. The transcription-coupled repair (TCR) subpathway of NER, discovered nearly two decades later, is dedicated to the removal of lesions from the template DNA strands of actively transcribed genes. In this review I will outline the essential factors and complexes involved in NER in humans, and will comment on additional factors and metabolic processes that affect the efficiency of this important process.

摘要

20世纪60年代初,塞特洛、霍华德-弗兰德斯、哈纳沃尔特及其同事对DNA损伤切除和修复复制的证明,促成了核苷酸切除修复(NER)这一普遍存在途径的发现。从单细胞细菌到复杂的哺乳动物和植物,生物体中NER的一系列步骤都是相似的,包括识别破坏DNA双螺旋的损伤、加合物或结构,切除包含有害损伤的短寡核苷酸,以未受损的对侧链为模板合成修复补丁,以及进行连接,从而将DNA恢复到原始形式。近二十年后发现的NER转录偶联修复(TCR)子途径,专门用于从活跃转录基因的模板DNA链上去除损伤。在这篇综述中,我将概述人类NER中涉及的基本因子和复合物,并对影响这一重要过程效率的其他因子和代谢过程进行评论。

相似文献

1
Nucleotide excision repair in humans.
DNA Repair (Amst). 2015 Dec;36:13-18. doi: 10.1016/j.dnarep.2015.09.003. Epub 2015 Sep 10.
2
Transcription-coupled repair: an update.
Arch Toxicol. 2016 Nov;90(11):2583-2594. doi: 10.1007/s00204-016-1820-x. Epub 2016 Aug 22.
3
The complex choreography of transcription-coupled repair.
DNA Repair (Amst). 2014 Jul;19:64-70. doi: 10.1016/j.dnarep.2014.03.025. Epub 2014 Apr 19.
4
Nucleotide excision repair and its interplay with transcription.
Toxicology. 2003 Nov 15;193(1-2):79-90. doi: 10.1016/j.tox.2003.06.001.
5
Lack of strand-specific repair of UV-induced DNA lesions in three genes of the archaeon Sulfolobus solfataricus.
J Mol Biol. 2007 Jan 26;365(4):921-9. doi: 10.1016/j.jmb.2006.10.045. Epub 2006 Oct 19.
6
Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription.
J Biol Chem. 2016 Jan 8;291(2):848-61. doi: 10.1074/jbc.M115.685271. Epub 2015 Nov 11.
7
Repair of UV induced DNA lesions in ribosomal gene chromatin and the role of "Odd" RNA polymerases (I and III).
DNA Repair (Amst). 2015 Dec;36:49-58. doi: 10.1016/j.dnarep.2015.09.007. Epub 2015 Sep 10.
8
Structural basis of DNA lesion recognition for eukaryotic transcription-coupled nucleotide excision repair.
DNA Repair (Amst). 2018 Nov;71:43-55. doi: 10.1016/j.dnarep.2018.08.006. Epub 2018 Aug 23.
9
Nucleotide excision repair: a versatile and smart toolkit.
Acta Biochim Biophys Sin (Shanghai). 2022 May 25;54(6):807-819. doi: 10.3724/abbs.2022054.

引用本文的文献

2
Skin Photodamage and Melanomagenesis: A Comprehensive Review.
Cancers (Basel). 2025 May 26;17(11):1784. doi: 10.3390/cancers17111784.
3
Biological Models of Oxidative Purine DNA Damage in Neurodegenerative Disorders.
Antioxidants (Basel). 2025 May 11;14(5):578. doi: 10.3390/antiox14050578.
4
Joining of DNA breaks- interplay between DNA ligases and poly (ADP-ribose) polymerases.
DNA Repair (Amst). 2025 May;149:103843. doi: 10.1016/j.dnarep.2025.103843. Epub 2025 May 2.
8
Polymorphisms in DNA Repair Genes as Biomarkers of Susceptibility for Pesticide-Induced DNA Damage among Agricultural Workers: A Review.
Indian J Occup Environ Med. 2024 Oct-Dec;28(4):261-266. doi: 10.4103/ijoem.ijoem_324_23. Epub 2024 Dec 23.
10
Proteins Associated with Neurodegenerative Diseases: Link to DNA Repair.
Biomedicines. 2024 Dec 11;12(12):2808. doi: 10.3390/biomedicines12122808.

本文引用的文献

1
Photosensitive human syndromes.
Mutat Res. 2015 Jun;776:24-30. doi: 10.1016/j.mrfmmm.2014.11.003. Epub 2014 Nov 14.
2
Ubiquitylation, neddylation and the DNA damage response.
Open Biol. 2015 Apr;5(4):150018. doi: 10.1098/rsob.150018.
3
TFIIH subunit alterations causing xeroderma pigmentosum and trichothiodystrophy specifically disturb several steps during transcription.
Am J Hum Genet. 2015 Feb 5;96(2):194-207. doi: 10.1016/j.ajhg.2014.12.012. Epub 2015 Jan 22.
4
Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability.
Mol Cell. 2014 Dec 18;56(6):777-85. doi: 10.1016/j.molcel.2014.10.020. Epub 2014 Nov 26.
5
Insight in the multilevel regulation of NER.
Exp Cell Res. 2014 Nov 15;329(1):116-23. doi: 10.1016/j.yexcr.2014.08.010. Epub 2014 Aug 13.
6
Ubiquitin at work: the ubiquitous regulation of the damage recognition step of NER.
Exp Cell Res. 2014 Nov 15;329(1):101-9. doi: 10.1016/j.yexcr.2014.07.018. Epub 2014 Jul 22.
7
Understanding nucleotide excision repair and its roles in cancer and ageing.
Nat Rev Mol Cell Biol. 2014 Jul;15(7):465-81. doi: 10.1038/nrm3822.
8
Tissue specificity in DNA repair: lessons from trinucleotide repeat instability.
Trends Genet. 2014 Jun;30(6):220-9. doi: 10.1016/j.tig.2014.04.005. Epub 2014 May 16.
9
Ribonucleotides in DNA: origins, repair and consequences.
DNA Repair (Amst). 2014 Jul;19:27-37. doi: 10.1016/j.dnarep.2014.03.029. Epub 2014 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验