Suppr超能文献

DNA损伤反应通过抑制GATA4的自噬诱导炎症和衰老。

The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4.

作者信息

Kang Chanhee, Xu Qikai, Martin Timothy D, Li Mamie Z, Demaria Marco, Aron Liviu, Lu Tao, Yankner Bruce A, Campisi Judith, Elledge Stephen J

机构信息

Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA.

Buck Institute for Research on Aging, Novato, CA 94945, USA.

出版信息

Science. 2015 Sep 25;349(6255):aaa5612. doi: 10.1126/science.aaa5612.

Abstract

Cellular senescence is a terminal stress-activated program controlled by the p53 and p16(INK4a) tumor suppressor proteins. A striking feature of senescence is the senescence-associated secretory phenotype (SASP), a pro-inflammatory response linked to tumor promotion and aging. We have identified the transcription factor GATA4 as a senescence and SASP regulator. GATA4 is stabilized in cells undergoing senescence and is required for the SASP. Normally, GATA4 is degraded by p62-mediated selective autophagy, but this regulation is suppressed during senescence, thereby stabilizing GATA4. GATA4 in turn activates the transcription factor NF-κB to initiate the SASP and facilitate senescence. GATA4 activation depends on the DNA damage response regulators ATM and ATR, but not on p53 or p16(INK4a). GATA4 accumulates in multiple tissues, including the aging brain, and could contribute to aging and its associated inflammation.

摘要

细胞衰老 是一种由 p53 和 p16(INK4a) 肿瘤抑制蛋白控制的终末应激激活程序。衰老的一个显著特征是衰老相关分泌表型 (SASP),这是一种与肿瘤促进和衰老相关的促炎反应。我们已确定转录因子 GATA4 为衰老和 SASP 的调节因子。GATA4 在经历衰老的细胞中稳定存在,并且是 SASP 所必需的。正常情况下,GATA4 通过 p62 介导的选择性自噬降解,但这种调节在衰老过程中受到抑制,从而使 GATA4 稳定。GATA4 反过来激活转录因子 NF-κB 以启动 SASP 并促进衰老。GATA4 的激活依赖于 DNA 损伤反应调节因子 ATM 和 ATR,但不依赖于 p53 或 p16(INK4a)。GATA4 在包括衰老大脑在内的多种组织中积累,并可能导致衰老及其相关炎症。

相似文献

1
The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4.
Science. 2015 Sep 25;349(6255):aaa5612. doi: 10.1126/science.aaa5612.
2
Hexavalent chromium triggers hepatocytes premature senescence via the GATA4/NF-κB signaling pathway mediated by the DNA damage response.
Ecotoxicol Environ Saf. 2022 Jul 1;239:113645. doi: 10.1016/j.ecoenv.2022.113645. Epub 2022 May 16.
5
ATM is a key driver of NF-κB-dependent DNA-damage-induced senescence, stem cell dysfunction and aging.
Aging (Albany NY). 2020 Mar 22;12(6):4688-4710. doi: 10.18632/aging.102863.
6
Pathogenesis of Human Papillomaviruses Requires the ATR/p62 Autophagy-Related Pathway.
mBio. 2020 Aug 12;11(4):e01628-20. doi: 10.1128/mBio.01628-20.
7
A New Pathway for Senescence Regulation.
Genomics Proteomics Bioinformatics. 2015 Dec;13(6):333-5. doi: 10.1016/j.gpb.2015.11.002. Epub 2016 Jan 8.
10
CELL BIOLOGY. GATA get a hold on senescence.
Science. 2015 Sep 25;349(6255):1448-9. doi: 10.1126/science.aad2501.

引用本文的文献

1
Cellular senescence in colorectal cancer: its occurrence, effect and therapy.
Front Oncol. 2025 Aug 15;15:1580951. doi: 10.3389/fonc.2025.1580951. eCollection 2025.
2
Interrogating the regulatory epigenome of cellular senescence.
Cell Mol Life Sci. 2025 Aug 31;82(1):328. doi: 10.1007/s00018-025-05848-w.
3
Generation of an In Vitro Cartilage Aging Model Using Human Sera from Old Donors.
Bioengineering (Basel). 2025 Jul 30;12(8):823. doi: 10.3390/bioengineering12080823.
4
PTEN-mediated senescence of lung epithelial cells drives ventilator-induced pulmonary fibrosis.
Theranostics. 2025 Jul 25;15(16):8360-8376. doi: 10.7150/thno.117523. eCollection 2025.
5
The emerging role of cellular senescence in amyotrophic lateral sclerosis.
Front Neurosci. 2025 Aug 1;19:1599492. doi: 10.3389/fnins.2025.1599492. eCollection 2025.
6
Understanding and targeting senescence in kidney disease.
Clin Kidney J. 2025 Jul 7;18(8):sfaf190. doi: 10.1093/ckj/sfaf190. eCollection 2025 Aug.
7
The states of senescent cells.
Biochem Soc Trans. 2025 Aug 29;53(4):935-952. doi: 10.1042/BST20253054.
8
Myeloid cells as IFNα producers in systemic lupus erythematosus.
Front Immunol. 2025 Jul 17;16:1562221. doi: 10.3389/fimmu.2025.1562221. eCollection 2025.
9
Macrophages: Subtypes, Distribution, Polarization, Immunomodulatory Functions, and Therapeutics.
MedComm (2020). 2025 Jul 25;6(8):e70304. doi: 10.1002/mco2.70304. eCollection 2025 Aug.

本文引用的文献

1
An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA.
Dev Cell. 2014 Dec 22;31(6):722-33. doi: 10.1016/j.devcel.2014.11.012. Epub 2014 Dec 11.
2
REST and stress resistance in ageing and Alzheimer's disease.
Nature. 2014 Mar 27;507(7493):448-54. doi: 10.1038/nature13163. Epub 2014 Mar 19.
3
Programmed cell senescence during mammalian embryonic development.
Cell. 2013 Nov 21;155(5):1104-18. doi: 10.1016/j.cell.2013.10.019. Epub 2013 Nov 14.
4
Senescence is a developmental mechanism that contributes to embryonic growth and patterning.
Cell. 2013 Nov 21;155(5):1119-30. doi: 10.1016/j.cell.2013.10.041. Epub 2013 Nov 14.
5
Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome.
Cell. 2013 Nov 7;155(4):948-62. doi: 10.1016/j.cell.2013.10.011. Epub 2013 Oct 31.
6
Lysosome-mediated processing of chromatin in senescence.
J Cell Biol. 2013 Jul 8;202(1):129-43. doi: 10.1083/jcb.201212110. Epub 2013 Jul 1.
7
The mechanism and physiological function of macroautophagy.
J Innate Immun. 2013;5(5):427-33. doi: 10.1159/000351979. Epub 2013 Jun 11.
8
A complex secretory program orchestrated by the inflammasome controls paracrine senescence.
Nat Cell Biol. 2013 Aug;15(8):978-90. doi: 10.1038/ncb2784. Epub 2013 Jun 16.
9
The hallmarks of aging.
Cell. 2013 Jun 6;153(6):1194-217. doi: 10.1016/j.cell.2013.05.039.
10
Non-cell-autonomous tumor suppression by p53.
Cell. 2013 Apr 11;153(2):449-60. doi: 10.1016/j.cell.2013.03.020. Epub 2013 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验