Suppr超能文献

脑膜炎奈瑟菌Cas9的脱氧核糖核酸酶H活性

DNase H Activity of Neisseria meningitidis Cas9.

作者信息

Zhang Yan, Rajan Rakhi, Seifert H Steven, Mondragón Alfonso, Sontheimer Erik J

机构信息

RNA Therapeutics Institute, Program in Molecular Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605-2324, USA.

Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA.

出版信息

Mol Cell. 2015 Oct 15;60(2):242-55. doi: 10.1016/j.molcel.2015.09.020.

Abstract

Type II CRISPR systems defend against invasive DNA by using Cas9 as an RNA-guided nuclease that creates double-stranded DNA breaks. Dual RNAs (CRISPR RNA [crRNA] and tracrRNA) are required for Cas9's targeting activities observed to date. Targeting requires a protospacer adjacent motif (PAM) and crRNA-DNA complementarity. Cas9 orthologs (including Neisseria meningitidis Cas9 [NmeCas9]) have also been adopted for genome engineering. Here we examine the DNA cleavage activities and substrate requirements of NmeCas9, including a set of unusually complex PAM recognition patterns. Unexpectedly, NmeCas9 cleaves single-stranded DNAs in a manner that is RNA guided but PAM and tracrRNA independent. Beyond the need for guide-target pairing, this "DNase H" activity has no apparent sequence requirements, and the cleavage sites are measured from the 5' end of the DNA substrate's RNA-paired region. These results indicate that tracrRNA is not strictly required for NmeCas9 enzymatic activation, and expand the list of targeting activities of Cas9 endonucleases.

摘要

II型CRISPR系统通过使用Cas9作为RNA引导的核酸酶来抵御入侵的DNA,该核酸酶可产生双链DNA断裂。迄今为止观察到的Cas9靶向活性需要双RNA(CRISPR RNA [crRNA]和反式激活crRNA [tracrRNA])。靶向需要一个原间隔序列临近基序(PAM)和crRNA与DNA的互补性。Cas9直系同源物(包括脑膜炎奈瑟菌Cas9 [NmeCas9])也已被用于基因组工程。在这里,我们研究了NmeCas9的DNA切割活性和底物要求,包括一组异常复杂的PAM识别模式。出乎意料的是,NmeCas9以一种由RNA引导但不依赖PAM和tracrRNA的方式切割单链DNA。除了需要引导序列与靶序列配对外,这种“核酸酶H”活性没有明显的序列要求,切割位点是从DNA底物RNA配对区域的5'端开始测量的。这些结果表明,tracrRNA对于NmeCas9的酶激活不是严格必需的,并扩展了Cas9内切核酸酶的靶向活性列表。

相似文献

1
DNase H Activity of Neisseria meningitidis Cas9.
Mol Cell. 2015 Oct 15;60(2):242-55. doi: 10.1016/j.molcel.2015.09.020.
2
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
Nature. 2016 Apr 28;532(7600):517-21. doi: 10.1038/nature17945. Epub 2016 Apr 20.
3
Programmable RNA Cleavage and Recognition by a Natural CRISPR-Cas9 System from Neisseria meningitidis.
Mol Cell. 2018 Mar 1;69(5):906-914.e4. doi: 10.1016/j.molcel.2018.01.025. Epub 2018 Feb 15.
4
C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism.
Mol Cell. 2017 Jan 19;65(2):310-322. doi: 10.1016/j.molcel.2016.11.040. Epub 2016 Dec 15.
5
Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a).
Proc Natl Acad Sci U S A. 2018 May 22;115(21):5444-5449. doi: 10.1073/pnas.1718686115. Epub 2018 May 7.
6
The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells.
Mol Ther. 2016 Mar;24(3):645-54. doi: 10.1038/mt.2016.8. Epub 2016 Jan 19.
7
A scoutRNA Is Required for Some Type V CRISPR-Cas Systems.
Mol Cell. 2020 Aug 6;79(3):416-424.e5. doi: 10.1016/j.molcel.2020.06.022. Epub 2020 Jul 8.
8
CRISPR-Cas9 Structures and Mechanisms.
Annu Rev Biophys. 2017 May 22;46:505-529. doi: 10.1146/annurev-biophys-062215-010822. Epub 2017 Mar 30.
10
Biochemical characterization of RNA-guided ribonuclease activities for CRISPR-Cas9 systems.
Methods. 2020 Feb 1;172:32-41. doi: 10.1016/j.ymeth.2019.06.018. Epub 2019 Jun 20.

引用本文的文献

1
Mechanism of Cas9 inhibition by AcrIIA11.
Nucleic Acids Res. 2025 Apr 22;53(8). doi: 10.1093/nar/gkaf318.
2
Utilization of CRISPR-Cas genome editing technology in filamentous fungi: function and advancement potentiality.
Front Microbiol. 2024 Mar 28;15:1375120. doi: 10.3389/fmicb.2024.1375120. eCollection 2024.
3
A Mutated Nme1Cas9 Is a Functional Alternative RNase to Both LwaCas13a and RfxCas13d in the Yeast .
Front Bioeng Biotechnol. 2022 Jun 2;10:922949. doi: 10.3389/fbioe.2022.922949. eCollection 2022.
4
Bio-informatic analysis of CRISPR protospacer adjacent motifs (PAMs) in T4 genome.
BMC Genom Data. 2022 Jun 2;23(1):40. doi: 10.1186/s12863-022-01056-8.
5
Genome editing with type II-C CRISPR-Cas9 systems from Neisseria meningitidis in rice.
Plant Biotechnol J. 2022 Feb;20(2):350-359. doi: 10.1111/pbi.13716. Epub 2021 Nov 3.
6
Mini review: genome and transcriptome editing using CRISPR-cas systems for haematological malignancy gene therapy.
Transgenic Res. 2021 Apr;30(2):129-141. doi: 10.1007/s11248-020-00232-9. Epub 2021 Feb 20.
8
A positive, growth-based PAM screen identifies noncanonical motifs recognized by the Cas9.
Sci Adv. 2020 Jul 15;6(29):eabb4054. doi: 10.1126/sciadv.abb4054. eCollection 2020 Jul.
9
10
Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States.
Mol Cell. 2019 Dec 19;76(6):938-952.e5. doi: 10.1016/j.molcel.2019.09.025. Epub 2019 Oct 24.

本文引用的文献

1
An updated evolutionary classification of CRISPR-Cas systems.
Nat Rev Microbiol. 2015 Nov;13(11):722-36. doi: 10.1038/nrmicro3569. Epub 2015 Sep 28.
2
STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition.
Science. 2015 Jun 26;348(6242):1477-81. doi: 10.1126/science.aab1452.
3
The Bacterial Origins of the CRISPR Genome-Editing Revolution.
Hum Gene Ther. 2015 Jul;26(7):413-24. doi: 10.1089/hum.2015.091.
4
In vivo genome editing using Staphylococcus aureus Cas9.
Nature. 2015 Apr 9;520(7546):186-91. doi: 10.1038/nature14299. Epub 2015 Apr 1.
5
Cas9 specifies functional viral targets during CRISPR-Cas adaptation.
Nature. 2015 Mar 12;519(7542):199-202. doi: 10.1038/nature14245. Epub 2015 Feb 18.
6
Genome editing. The new frontier of genome engineering with CRISPR-Cas9.
Science. 2014 Nov 28;346(6213):1258096. doi: 10.1126/science.1258096.
7
Guide RNA functional modules direct Cas9 activity and orthogonality.
Mol Cell. 2014 Oct 23;56(2):333-339. doi: 10.1016/j.molcel.2014.09.019. Epub 2014 Oct 16.
8
The genetics of Neisseria species.
Annu Rev Genet. 2014;48:405-31. doi: 10.1146/annurev-genet-120213-092007. Epub 2014 Sep 10.
9
Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease.
Nature. 2014 Sep 25;513(7519):569-73. doi: 10.1038/nature13579. Epub 2014 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验