Wang Jiajun, Chou Shuli, Xu Lin, Zhu Xin, Dong Na, Shan Anshan, Chen Zhihui
Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P.R. China.
Sci Rep. 2015 Nov 4;5:15963. doi: 10.1038/srep15963.
We used a template-assisted approach to develop synthetic antimicrobial peptides, which differ from naturally occurring antimicrobial peptides that can compromise host natural defenses. Previous researches have demonstrated that symmetrical distribution patterns of amino acids contribute to the antimicrobial activity of natural peptides. However, there is little research describing such design ideas for synthetic α-helical peptides. Therefore, here, we established a centrosymmetric α-helical sequence template (y + hhh + y)n (h, hydrophobic amino acid; +, cationic amino acid; y, Gly or hydrophobic amino acid), which contributed to amphipathicity, and a series of centrosymmetric peptides was designed with pairs of small amino acids (Ala and Gly), which were utilized to modulate the biological activity. The centrosymmetric peptides with 3 repeat units exhibited strong antimicrobial activity; in particular, the Gly-rich centrosymmetric peptide GG3 showed stronger selectivity for gram-negative bacteria without hemolysis. Furthermore, beyond our expectation, fluorescence spectroscopy and electron microscopy analyses indicated that the GG3, which possessed poor α-helix conformation, dramatically exhibited marked membrane destruction via inducing bacterial membrane permeabilization, pore formation and disruption, even bound DNA to further exert antimicrobial activity. Collectively, the Gly-rich centrosymmetric peptide GG3 was an ideal candidate for commercialization as a clinical therapeutic to treat gram-negative bacterial infections.
我们采用了一种模板辅助方法来开发合成抗菌肽,这些合成抗菌肽不同于可能损害宿主天然防御能力的天然抗菌肽。先前的研究表明,氨基酸的对称分布模式有助于天然肽的抗菌活性。然而,很少有研究描述合成α-螺旋肽的此类设计理念。因此,在此我们建立了一种有助于两亲性的中心对称α-螺旋序列模板(y + hhh + y)n(h,疏水氨基酸;+,阳离子氨基酸;y,甘氨酸或疏水氨基酸),并设计了一系列带有成对小氨基酸(丙氨酸和甘氨酸)的中心对称肽,用于调节其生物活性。具有3个重复单元的中心对称肽表现出强大的抗菌活性;特别是,富含甘氨酸的中心对称肽GG3对革兰氏阴性菌表现出更强的选择性且无溶血现象。此外,出乎我们意料的是,荧光光谱和电子显微镜分析表明,具有较差α-螺旋构象的GG3通过诱导细菌膜通透性增加、形成孔道和破坏,甚至结合DNA以进一步发挥抗菌活性,从而显著表现出明显的膜破坏作用。总的来说,富含甘氨酸的中心对称肽GG3是作为治疗革兰氏阴性菌感染的临床治疗药物进行商业化的理想候选物。