Suppr超能文献

不同的CRISPR-Cas9酶对单链DNA的切割

Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes.

作者信息

Ma Enbo, Harrington Lucas B, O'Connell Mitchell R, Zhou Kaihong, Doudna Jennifer A

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA.

出版信息

Mol Cell. 2015 Nov 5;60(3):398-407. doi: 10.1016/j.molcel.2015.10.030.

Abstract

Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9-guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family.

摘要

Cas9对双链DNA(dsDNA)的切割是II型CRISPR-Cas免疫系统的一个标志。Cas9-导向RNA复合物识别DNA中的20个碱基对序列,并产生一个位点特异性双链断裂,这是一种用于基因组编辑的强大活性。所有已研究的Cas9酶对DNA的识别都需要在靶位点旁边有一个原间隔相邻基序(PAM)。我们发现,来自进化上不同细菌的Cas9酶可以通过一种RNA导向、不依赖PAM的识别机制识别并切割单链DNA(ssDNA)。比较分析表明,与广泛用于基因组工程的II-A型化脓性链球菌Cas9不同,较小的II-C型Cas9蛋白具有有限的dsDNA结合和解旋活性以及混杂的导向RNA特异性。这些结果表明,II-C型Cas9酶在基因组编辑中的低效是由于其切割dsDNA的能力有限,并表明ssDNA切割是Cas9酶家族的一种原始功能。

相似文献

1
Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes.
Mol Cell. 2015 Nov 5;60(3):398-407. doi: 10.1016/j.molcel.2015.10.030.
2
Programmable RNA Cleavage and Recognition by a Natural CRISPR-Cas9 System from Neisseria meningitidis.
Mol Cell. 2018 Mar 1;69(5):906-914.e4. doi: 10.1016/j.molcel.2018.01.025. Epub 2018 Feb 15.
3
Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro.
Biochemistry. 2015 Dec 8;54(48):7063-6. doi: 10.1021/acs.biochem.5b01108. Epub 2015 Nov 24.
4
Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a).
Proc Natl Acad Sci U S A. 2018 May 22;115(21):5444-5449. doi: 10.1073/pnas.1718686115. Epub 2018 May 7.
5
Bidirectional Degradation of DNA Cleavage Products Catalyzed by CRISPR/Cas9.
J Am Chem Soc. 2018 Mar 14;140(10):3743-3750. doi: 10.1021/jacs.7b13050. Epub 2018 Feb 20.
7
Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
Nature. 2015 Jul 23;523(7561):481-5. doi: 10.1038/nature14592. Epub 2015 Jun 22.
8
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.
Nature. 2014 Mar 6;507(7490):62-7. doi: 10.1038/nature13011. Epub 2014 Jan 29.
9
Prediction and Validation of Native and Engineered Cas9 Guide Sequences.
Cold Spring Harb Protoc. 2016 Jul 1;2016(7):2016/7/pdb.prot086785. doi: 10.1101/pdb.prot086785.
10
Dynamics of CRISPR-Cas9 genome interrogation in living cells.
Science. 2015 Nov 13;350(6262):823-6. doi: 10.1126/science.aac6572.

引用本文的文献

1
CRISPR/Cas9 a genomic engineering technology for treatment in ALS mouse models.
Regen Ther. 2025 Aug 13;30:575-583. doi: 10.1016/j.reth.2025.07.009. eCollection 2025 Dec.
2
3
The CRISPR-Cas revolution in head and neck cancer: a new era of targeted therapy.
Funct Integr Genomics. 2025 May 30;25(1):113. doi: 10.1007/s10142-025-01612-2.
6
Improving adenine base editing precision by enlarging the recognition domain of CRISPR-Cas9.
Nat Commun. 2025 Feb 28;16(1):2081. doi: 10.1038/s41467-025-57154-5.
7
Rationally designed Cas9 enables efficient gene activation and base editing.
Mol Ther Nucleic Acids. 2024 Oct 18;35(4):102366. doi: 10.1016/j.omtn.2024.102366. eCollection 2024 Dec 10.
8
How Helpful May Be a CRISPR/Cas-Based System for Food Traceability?
Foods. 2024 Oct 25;13(21):3397. doi: 10.3390/foods13213397.
10
Rapid DNA unwinding accelerates genome editing by engineered CRISPR-Cas9.
Cell. 2024 Jun 20;187(13):3249-3261.e14. doi: 10.1016/j.cell.2024.04.031. Epub 2024 May 22.

本文引用的文献

1
CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems.
Annu Rev Microbiol. 2015;69:209-28. doi: 10.1146/annurev-micro-091014-104441. Epub 2015 Jul 22.
2
STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition.
Science. 2015 Jun 26;348(6242):1477-81. doi: 10.1126/science.aab1452.
3
The Bacterial Origins of the CRISPR Genome-Editing Revolution.
Hum Gene Ther. 2015 Jul;26(7):413-24. doi: 10.1089/hum.2015.091.
4
Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity.
Cell. 2015 May 21;161(5):1164-1174. doi: 10.1016/j.cell.2015.04.027. Epub 2015 May 7.
5
In vivo genome editing using Staphylococcus aureus Cas9.
Nature. 2015 Apr 9;520(7546):186-91. doi: 10.1038/nature14299. Epub 2015 Apr 1.
7
Genome editing. The new frontier of genome engineering with CRISPR-Cas9.
Science. 2014 Nov 28;346(6213):1258096. doi: 10.1126/science.1258096.
8
Guide RNA functional modules direct Cas9 activity and orthogonality.
Mol Cell. 2014 Oct 23;56(2):333-339. doi: 10.1016/j.molcel.2014.09.019. Epub 2014 Oct 16.
9
Programmable RNA recognition and cleavage by CRISPR/Cas9.
Nature. 2014 Dec 11;516(7530):263-6. doi: 10.1038/nature13769. Epub 2014 Sep 28.
10
Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes.
Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9798-803. doi: 10.1073/pnas.1402597111. Epub 2014 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验