Singer Mirko, Marshall Jennifer, Heiss Kirsten, Mair Gunnar R, Grimm Dirk, Mueller Ann-Kristin, Frischknecht Friedrich
Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
Genome Biol. 2015 Nov 17;16:249. doi: 10.1186/s13059-015-0811-1.
Genome editing of malaria parasites is key to the generation of live attenuated parasites used in experimental vaccination approaches. DNA repair in Plasmodium generally occurs only through homologous recombination. This has been used to generate transgenic parasites that lack one to three genes, leading to developmental arrest in the liver and allowing the host to launch a protective immune response. While effective in principle, this approach is not safe for use in humans as single surviving parasites can still cause disease. Here we use zinc-finger nucleases to generate attenuated parasite lines lacking an entire chromosome arm, by a timed induction of a double-strand break. Rare surviving parasites also allow the investigation of unconventional DNA repair mechanisms in a rodent malaria parasite.
A single, zinc-finger nuclease-induced DNA double-strand break results in the generation of attenuated parasite lines that show varying degrees of developmental arrest, protection efficacy in an immunisation regime and safety, depending on the timing of zinc-finger nuclease expression within the life cycle. We also identify DNA repair by microhomology-mediated end joining with as little as four base pairs, resulting in surviving parasites and thus breakthrough infections.
Malaria parasites can repair DNA double-strand breaks with surprisingly small mini-homology domains located across the break point. Timely expression of zinc-finger nucleases could be used to generate a new generation of attenuated parasite lines lacking hundreds of genes.
疟原虫的基因组编辑是用于实验性疫苗接种方法的减毒活疟原虫产生的关键。疟原虫中的DNA修复通常仅通过同源重组发生。这已被用于产生缺少一至三个基因的转基因疟原虫,导致其在肝脏中发育停滞,并使宿主能够启动保护性免疫反应。虽然该方法原则上有效,但由于单个存活的疟原虫仍可致病,因此对人类使用并不安全。在此,我们使用锌指核酸酶通过定时诱导双链断裂来产生缺少整条染色体臂的减毒疟原虫株系。罕见的存活疟原虫也有助于研究啮齿动物疟原虫中非常规的DNA修复机制。
单个锌指核酸酶诱导的DNA双链断裂会产生减毒疟原虫株系,这些株系根据锌指核酸酶在生命周期中的表达时间不同,表现出不同程度的发育停滞、免疫接种方案中的保护效果和安全性。我们还鉴定出通过微同源性介导的末端连接进行的DNA修复,其中微同源性低至四个碱基对,从而产生存活的疟原虫并因此导致突破性感染。
疟原虫能够利用位于断裂点两侧的惊人小的微同源结构域修复DNA双链断裂。锌指核酸酶的适时表达可用于产生缺少数百个基因的新一代减毒疟原虫株系。