Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg UMR-7177 CNRS-UdS , 1 Rue Blaise Pascal BP 296/R8, F-67008 Strasbourg Cedex, France.
J Chem Theory Comput. 2015 Jan 13;11(1):99-110. doi: 10.1021/ct500846n.
Ultrafast luminescence decay and intersystem crossing processes through the seven low-lying singlet and triplet excited states of [Re (X)(CO)3(bpy)] (X = Cl, Br, I; bpy = 2,2'-bipyridine) are interpreted on the basis of time-dependent density functional theory (TD-DFT) electronic structure calculations performed in acetonitrile and including spin-orbit coupling (SOC) effects within the zeroth-order approximation. It is shown that the red shift of the lowest part of the spectra by SOC increases from X = Cl (0.06 eV) to X = Br (0.09 eV) and X = I (0.18 eV) due to the participation of the triplet sublevels to the absorption. The six lowest "spin-orbit" states remain largely triplet in character and the maximum of absorption is not drastically affected by SOC. While the energy of the excited states is affected by SOC, the character of these states is not significantly modified: SOC mixes states of the same nature, namely metal-to-ligand-charge-transfer/halide-to-ligand-charge-transfer (MLCT/XLCT). This mixing can be large, however, as illustrated by the S1/T2 (a(1)A″/a(3)A') mixing that amounts to about 50:50 within the series Cl > Br > I. On the basis of the optimized structures of the six lowest excited states an interpretation of the emission signals detected by ultrafast luminescence spectroscopy is proposed. It is shown that whereas the experimental Stokes shift of 6000 cm(-1) observed for the three complexes is well reproduced without SOC correction for the Cl and Br complexes, SOC effects have to be taken into account for the iodide complex. The early signal of ultrafast luminescence detected immediately after absorption at 400 nm to the S2 state, covering the 500-550 nm energy domain and characterized by a decay τ1 = 85 fs (X = Cl) and 128 fs (X = Br), is attributed to S2 calculated at 505 and 522 nm, respectively, and to some extend to T3 by SOC. The intermediate band observed at longer time-scale between 550 and 600 nm with emissive decay time τ2 = 340 fs (X = Cl) and 470 fs (X = Br) can be assigned to T2 calculated at 558 and 571 nm, respectively. The S1 state could also participate to this band by SOC. In both complexes the long-lived emission at 600-610 nm is attributed to the lowest T1 state calculated at 596 and 592 nm for the chloride and bromide complexes, respectively, and shifted to ∼610 nm by SOC. Important SOC effects characterize the luminescence decay of [Re (I)(CO)3(bpy)], the mechanism of which differs significantly of the one proposed for the two other complexes. The A' spin-orbit sublevel of T3 state calculated at 512 nm with an oscillator strength of 0.17 × 10(-1) participates to the first signal characterized by a rapid decay (τ1 = 152 fs) with a maximum at 525 nm. The intermediate band covering the 550-600 nm region with a decay time τ2 = 1180 fs is assigned to the "spin-orbit" S1 state calculated at 595 nm. The S2 absorbing state calculated at 577 nm could contribute to these two signals. According to the spin-orbit sublevels calculated for T1 and T2, both states contribute to the long-lived emission detected at 600-610 nm, T1 with two sublevels A' of significant oscillator strengths of ∼10(-1) being the main contributor. In order to follow the evolution of the excited states energy and SOC as a function of the Re-X stretching normal mode their potentials have been calculated without and with SOC as a function of the mass and frequency weighted Re-X stretching mode displacement from the Franck-Condon geometries. Exploratory wavepacket propagations show that SOC alone cannot account for the whole ISC process. Vibronic effects should play an important role in the ultrafast luminescence decay observed experimentally.
基于在乙腈中执行的含时密度泛函理论(TD-DFT)电子结构计算,并包含零阶近似的自旋轨道耦合(SOC)效应,解释了 [Re(X)(CO)3(bpy)](X = Cl、Br、I;bpy = 2,2'-联吡啶)的七个低能 singlet和三重激发态的超快荧光衰减和系间窜越过程。结果表明,由于三重亚能级参与吸收,最低部分光谱的红移通过 SOC 从 X = Cl(0.06 eV)增加到 X = Br(0.09 eV)和 X = I(0.18 eV)。六个最低的“自旋轨道”态在很大程度上仍保持三重态特征,吸收的最大值不会受到 SOC 的显著影响。虽然激发态的能量受到 SOC 的影响,但这些态的性质并没有显著改变:SOC 混合了具有相同性质的态,即金属-配体电荷转移/卤化物-配体电荷转移(MLCT/XLCT)。然而,这种混合可能很大,如 S1/T2(a(1)A″/a(3)A')混合所示,在 Cl > Br > I 系列中达到约 50:50。基于六个最低激发态的优化结构,提出了对超快荧光光谱检测到的发射信号的解释。结果表明,尽管实验观察到三个配合物的斯托克斯位移为 6000 cm(-1),但在没有 SOC 校正的情况下,Cl 和 Br 配合物的情况得到了很好的重现,而对于碘化物配合物,必须考虑 SOC 效应。吸收到 S2 态后立即检测到的超快荧光的早期信号,覆盖 500-550nm 能量范围,衰减时间 τ1 = 85 fs(X = Cl)和 128 fs(X = Br),归因于分别在 505nm 和 522nm 处计算的 S2,以及一定程度上归因于 SOC 的 T3。在 550nm 和 600nm 之间较长时间尺度上观察到的中间带,发射衰减时间 τ2 = 340 fs(X = Cl)和 470 fs(X = Br),可分别分配给在 558nm 和 571nm 处计算的 T2。S1 态也可以通过 SOC 参与该带。在两个配合物中,600-610nm 处的长寿命发射归因于分别为氯化物和溴化物配合物的最低 T1 态,其计算值为 596nm 和 592nm,通过 SOC 移至约 610nm。对于 [Re(I)(CO)3(bpy)],重要的 SOC 效应描述了其发光衰减机制,与另外两个配合物提出的机制有很大不同。在 512nm 处计算的 T3 态的 A'自旋轨道亚能级,其振子强度为 0.17×10(-1),参与以快速衰减(τ1 = 152 fs)为特征的第一个信号,其最大值为 525nm。覆盖 550-600nm 区域的中间带,衰减时间 τ2 = 1180 fs,分配给在 595nm 处计算的“自旋轨道”S1 态。在 577nm 处计算的 S2 吸收态可能会对这两个信号做出贡献。根据为 T1 和 T2 计算的自旋轨道亚能级,这两个态都有助于检测到的在 600-610nm 处的长寿命发射,其中 A'的两个亚能级的振子强度约为 10(-1),是主要贡献者。为了跟踪激发态能量和 SOC 作为 Re-X 拉伸正则模的函数的演化,在没有和有 SOC 的情况下计算了它们的势能,作为质量和频率加权 Re-X 拉伸模式相对于 Franck-Condon 几何形状的位移的函数。探索性波包传播表明,SOC 本身不能解释整个 ISC 过程。振动电子效应在实验中观察到的超快荧光衰减中应发挥重要作用。