Suppr超能文献

使用化学蛋白质组学平台绘制反应性化学物质的全蛋白质组相互作用图谱。

Mapping proteome-wide interactions of reactive chemicals using chemoproteomic platforms.

作者信息

Counihan Jessica L, Ford Breanna, Nomura Daniel K

机构信息

Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, United States.

Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, United States.

出版信息

Curr Opin Chem Biol. 2016 Feb;30:68-76. doi: 10.1016/j.cbpa.2015.11.007. Epub 2015 Nov 30.

Abstract

A large number of pharmaceuticals, endogenous metabolites, and environmental chemicals act through covalent mechanisms with protein targets. Yet, their specific interactions with the proteome still remain poorly defined for most of these reactive chemicals. Deciphering direct protein targets of reactive small-molecules is critical in understanding their biological action, off-target effects, potential toxicological liabilities, and development of safer and more selective agents. Chemoproteomic technologies have arisen as a powerful strategy that enable the assessment of proteome-wide interactions of these irreversible agents directly in complex biological systems. We review here several chemoproteomic strategies that have facilitated our understanding of specific protein interactions of irreversibly-acting pharmaceuticals, endogenous metabolites, and environmental electrophiles to reveal novel pharmacological, biological, and toxicological mechanisms.

摘要

大量药物、内源性代谢物和环境化学物质通过与蛋白质靶点的共价机制发挥作用。然而,对于大多数这些反应性化学物质而言,它们与蛋白质组的具体相互作用仍不清楚。解读反应性小分子的直接蛋白质靶点对于理解其生物学作用、脱靶效应、潜在毒理学风险以及开发更安全、更具选择性的药物至关重要。化学蛋白质组学技术已成为一种强大的策略,能够直接在复杂生物系统中评估这些不可逆试剂与蛋白质组的相互作用。我们在此综述了几种化学蛋白质组学策略,这些策略有助于我们理解不可逆作用药物、内源性代谢物和环境亲电试剂的特定蛋白质相互作用,以揭示新的药理、生物学和毒理学机制。

相似文献

1
Mapping proteome-wide interactions of reactive chemicals using chemoproteomic platforms.
Curr Opin Chem Biol. 2016 Feb;30:68-76. doi: 10.1016/j.cbpa.2015.11.007. Epub 2015 Nov 30.
2
Mapping Proteome-Wide Targets of Environmental Chemicals Using Reactivity-Based Chemoproteomic Platforms.
Chem Biol. 2015 Oct 22;22(10):1394-405. doi: 10.1016/j.chembiol.2015.09.008.
3
Reimagining Druggability Using Chemoproteomic Platforms.
Acc Chem Res. 2021 Apr 6;54(7):1801-1813. doi: 10.1021/acs.accounts.1c00065. Epub 2021 Mar 18.
4
Uncovering Drug Mechanism of Action by Proteome Wide- Identification of Drug-Binding Proteins.
Med Chem. 2017;13(6):526-535. doi: 10.2174/1573406413666170518154724.
5
Chemoproteomic-enabled phenotypic screening.
Cell Chem Biol. 2021 Mar 18;28(3):371-393. doi: 10.1016/j.chembiol.2021.01.012. Epub 2021 Feb 11.
6
Mass spectrometry-based chemoproteomic approaches.
Methods Mol Biol. 2012;803:3-13. doi: 10.1007/978-1-61779-364-6_1.
7
Methods for the elucidation of protein-small molecule interactions.
Chem Biol. 2013 May 23;20(5):667-73. doi: 10.1016/j.chembiol.2013.04.008.
8
Chemoproteomic profiling of protein modifications by lipid-derived electrophiles.
Curr Opin Chem Biol. 2016 Feb;30:37-45. doi: 10.1016/j.cbpa.2015.10.029. Epub 2015 Nov 25.
9
Chemoproteomic profiling of protein-metabolite interactions.
Curr Opin Chem Biol. 2020 Feb;54:28-36. doi: 10.1016/j.cbpa.2019.11.003. Epub 2019 Dec 5.
10
Probing small molecule-protein interactions: A new perspective for functional proteomics.
J Proteomics. 2011 Dec 10;75(1):100-15. doi: 10.1016/j.jprot.2011.07.017. Epub 2011 Jul 30.

引用本文的文献

1
Advancing Covalent Ligand and Drug Discovery beyond Cysteine.
Chem Rev. 2025 Jul 23;125(14):6653-6684. doi: 10.1021/acs.chemrev.5c00001. Epub 2025 May 22.
2
Targeting aldehyde dehydrogenase ALDH3A1 increases ferroptosis vulnerability in squamous cancer.
Oncogene. 2025 Apr;44(15):1037-1050. doi: 10.1038/s41388-025-03277-4. Epub 2025 Jan 25.
3
Decreasing the intrinsically disordered protein α-synuclein levels by targeting its structured mRNA with a ribonuclease-targeting chimera.
Proc Natl Acad Sci U S A. 2024 Jan 9;121(2):e2306682120. doi: 10.1073/pnas.2306682120. Epub 2024 Jan 5.
4
Technologies for Direct Detection of Covalent Protein-Drug Adducts.
Pharmaceuticals (Basel). 2023 Apr 5;16(4):547. doi: 10.3390/ph16040547.
6
Proteome-Wide Profiling of Cellular Targets Modified by Dopamine Metabolites Using a Bio-Orthogonally Functionalized Catecholamine.
ACS Chem Biol. 2021 Nov 19;16(11):2581-2594. doi: 10.1021/acschembio.1c00629. Epub 2021 Nov 2.
7
Nuclear Receptor Chemical Reporter Enables Domain-Specific Analysis of Ligands in Mammalian Cells.
ACS Chem Biol. 2020 Sep 18;15(9):2324-2330. doi: 10.1021/acschembio.0c00432. Epub 2020 Sep 10.
8
The Key Characteristics of Carcinogens: Relationship to the Hallmarks of Cancer, Relevant Biomarkers, and Assays to Measure Them.
Cancer Epidemiol Biomarkers Prev. 2020 Oct;29(10):1887-1903. doi: 10.1158/1055-9965.EPI-19-1346. Epub 2020 Mar 9.
9
Targeted and proteome-wide analysis of metabolite-protein interactions.
Curr Opin Chem Biol. 2020 Feb;54:19-27. doi: 10.1016/j.cbpa.2019.10.008. Epub 2019 Nov 29.
10
Activity-Based Sensing: A Synthetic Methods Approach for Selective Molecular Imaging and Beyond.
Angew Chem Int Ed Engl. 2020 Aug 10;59(33):13734-13762. doi: 10.1002/anie.201909690. Epub 2020 Apr 23.

本文引用的文献

1
Mapping Proteome-Wide Targets of Environmental Chemicals Using Reactivity-Based Chemoproteomic Platforms.
Chem Biol. 2015 Oct 22;22(10):1394-405. doi: 10.1016/j.chembiol.2015.09.008.
2
Proteome-Wide Profiling of Targets of Cysteine reactive Small Molecules by Using Ethynyl Benziodoxolone Reagents.
Angew Chem Int Ed Engl. 2015 Sep 7;54(37):10852-7. doi: 10.1002/anie.201505641. Epub 2015 Jul 24.
3
Selective inhibitor of platelet-activating factor acetylhydrolases 1b2 and 1b3 that impairs cancer cell survival.
ACS Chem Biol. 2015 Apr 17;10(4):925-32. doi: 10.1021/cb500893q. Epub 2015 Jan 20.
4
Immunomodulatory lysophosphatidylserines are regulated by ABHD16A and ABHD12 interplay.
Nat Chem Biol. 2015 Feb;11(2):164-71. doi: 10.1038/nchembio.1721. Epub 2015 Jan 12.
5
The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase.
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14924-9. doi: 10.1073/pnas.1413706111. Epub 2014 Sep 29.
6
Exploring metabolic pathways and regulation through functional chemoproteomic and metabolomic platforms.
Chem Biol. 2014 Sep 18;21(9):1171-84. doi: 10.1016/j.chembiol.2014.07.007.
7
A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors.
Nat Chem Biol. 2014 Sep;10(9):760-767. doi: 10.1038/nchembio.1582. Epub 2014 Jul 13.
8
Organophosphorus flame retardants inhibit specific liver carboxylesterases and cause serum hypertriglyceridemia.
ACS Chem Biol. 2014 May 16;9(5):1097-103. doi: 10.1021/cb500014r. Epub 2014 Mar 10.
9
In situ proteome profiling of C75, a covalent bioactive compound with potential anticancer activities.
Org Lett. 2014 Mar 7;16(5):1414-7. doi: 10.1021/ol500206w. Epub 2014 Feb 19.
10
Alkylation damage by lipid electrophiles targets functional protein systems.
Mol Cell Proteomics. 2014 Mar;13(3):849-59. doi: 10.1074/mcp.M113.032953. Epub 2014 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验