Suppr超能文献

前额叶皮质对全脑回路动力学及奖赏相关行为的调节

Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior.

作者信息

Ferenczi Emily A, Zalocusky Kelly A, Liston Conor, Grosenick Logan, Warden Melissa R, Amatya Debha, Katovich Kiefer, Mehta Hershel, Patenaude Brian, Ramakrishnan Charu, Kalanithi Paul, Etkin Amit, Knutson Brian, Glover Gary H, Deisseroth Karl

机构信息

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

Neurosciences Program, Stanford University, Stanford, CA 94305, USA.

出版信息

Science. 2016 Jan 1;351(6268):aac9698. doi: 10.1126/science.aac9698.

Abstract

Motivation for reward drives adaptive behaviors, whereas impairment of reward perception and experience (anhedonia) can contribute to psychiatric diseases, including depression and schizophrenia. We sought to test the hypothesis that the medial prefrontal cortex (mPFC) controls interactions among specific subcortical regions that govern hedonic responses. By using optogenetic functional magnetic resonance imaging to locally manipulate but globally visualize neural activity in rats, we found that dopamine neuron stimulation drives striatal activity, whereas locally increased mPFC excitability reduces this striatal response and inhibits the behavioral drive for dopaminergic stimulation. This chronic mPFC overactivity also stably suppresses natural reward-motivated behaviors and induces specific new brainwide functional interactions, which predict the degree of anhedonia in individuals. These findings describe a mechanism by which mPFC modulates expression of reward-seeking behavior, by regulating the dynamical interactions between specific distant subcortical regions.

摘要

对奖励的动机驱动适应性行为,而奖励感知和体验受损(快感缺乏)会导致包括抑郁症和精神分裂症在内的精神疾病。我们试图验证内侧前额叶皮质(mPFC)控制着调节享乐反应的特定皮质下区域之间相互作用的这一假设。通过使用光遗传学功能磁共振成像技术在局部操纵但全局可视化大鼠的神经活动,我们发现多巴胺神经元刺激驱动纹状体活动,而局部增强的mPFC兴奋性会降低这种纹状体反应,并抑制对多巴胺能刺激的行为驱动。这种慢性mPFC过度活动还会稳定地抑制自然奖励驱动的行为,并诱导特定的全脑新功能相互作用,这些相互作用可预测个体的快感缺乏程度。这些发现描述了一种机制,通过该机制mPFC通过调节特定远距离皮质下区域之间的动态相互作用来调节寻求奖励行为的表达。

相似文献

1
Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior.
Science. 2016 Jan 1;351(6268):aac9698. doi: 10.1126/science.aac9698.
2
NEUROSCIENCE. Illuminating anhedonia.
Science. 2016 Jan 1;351(6268):24-5. doi: 10.1126/science.aad9698.
3
Abnormal Frontostriatal Activity During Unexpected Reward Receipt in Depression and Schizophrenia: Relationship to Anhedonia.
Neuropsychopharmacology. 2016 Jul;41(8):2001-10. doi: 10.1038/npp.2015.370. Epub 2015 Dec 28.
4
Dopamine tunes prefrontal outputs to orchestrate aversive processing.
Brain Res. 2019 Jun 15;1713:16-31. doi: 10.1016/j.brainres.2018.11.044. Epub 2018 Dec 1.
5
Increased Neural Activity in Mesostriatal Regions after Prefrontal Transcranial Direct Current Stimulation and l-DOPA Administration.
J Neurosci. 2019 Jul 3;39(27):5326-5335. doi: 10.1523/JNEUROSCI.3128-18.2019. Epub 2019 May 1.
7
Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression.
Mol Psychiatry. 2016 Oct;21(10):1358-65. doi: 10.1038/mp.2015.168. Epub 2015 Nov 10.
8
Mapping the functional network of medial prefrontal cortex by combining optogenetics and fMRI in awake rats.
Neuroimage. 2015 Aug 15;117:114-23. doi: 10.1016/j.neuroimage.2015.05.036. Epub 2015 May 20.
9
Dopaminergic Enhancement of Striatal Response to Reward in Major Depression.
Am J Psychiatry. 2017 Apr 1;174(4):378-386. doi: 10.1176/appi.ajp.2016.16010111. Epub 2016 Oct 24.

引用本文的文献

2
Causal Connectivity Maps Derived from Single-Pulse Interleaved TMS/fMRI.
Res Sq. 2025 Aug 11:rs.3.rs-7158945. doi: 10.21203/rs.3.rs-7158945/v1.
3
Charting the path in rodent functional neuroimaging.
Imaging Neurosci (Camb). 2025 May 28;3. doi: 10.1162/IMAG.a.12. eCollection 2025.
4
Awake rodent fMRI: Gradient-echo echo planar imaging versus compressed-sensing fast low-angle shot.
Imaging Neurosci (Camb). 2025 Jan 2;3. doi: 10.1162/imag_a_00406. eCollection 2025.
5
Common and distinct drug cue reactivity patterns associated with cocaine and heroin: An fMRI meta-analysis.
Imaging Neurosci (Camb). 2024 Jul 1;2. doi: 10.1162/imag_a_00211. eCollection 2024.
7
Deconstructing neural predictors of risky choice.
PNAS Nexus. 2025 Jun 18;4(7):pgaf204. doi: 10.1093/pnasnexus/pgaf204. eCollection 2025 Jul.
10
Predicting Future Development of Stress-Induced Anhedonia From Cortical Dynamics and Facial Expression.
Res Sq. 2025 Mar 20:rs.3.rs-5537951. doi: 10.21203/rs.3.rs-5537951/v1.

本文引用的文献

2
Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping.
Cell. 2015 Jul 30;162(3):622-34. doi: 10.1016/j.cell.2015.07.015.
3
Resting-State Functional Connectivity in Psychiatric Disorders.
JAMA Psychiatry. 2015 Aug;72(8):743-4. doi: 10.1001/jamapsychiatry.2015.0484.
4
Dopamine-induced dissociation of BOLD and neural activity in macaque visual cortex.
Curr Biol. 2014 Dec 1;24(23):2805-11. doi: 10.1016/j.cub.2014.10.006. Epub 2014 Nov 20.
5
Pathological circuit function underlying addiction and anxiety disorders.
Nat Neurosci. 2014 Dec;17(12):1635-43. doi: 10.1038/nn.3849. Epub 2014 Nov 17.
6
Abnormal synchrony and effective connectivity in patients with schizophrenia and auditory hallucinations.
Neuroimage Clin. 2014 Sep 4;6:171-9. doi: 10.1016/j.nicl.2014.08.027. eCollection 2014.
7
Anti-anhedonic effect of ketamine and its neural correlates in treatment-resistant bipolar depression.
Transl Psychiatry. 2014 Oct 14;4(10):e469. doi: 10.1038/tp.2014.105.
8
Natural neural projection dynamics underlying social behavior.
Cell. 2014 Jun 19;157(7):1535-51. doi: 10.1016/j.cell.2014.05.017.
9
Coordination of entorhinal-hippocampal ensemble activity during associative learning.
Nature. 2014 Jun 5;510(7503):143-7. doi: 10.1038/nature13162. Epub 2014 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验