Suppr超能文献

用于构建复杂组织的3D生物打印技术。

3D bioprinting for engineering complex tissues.

作者信息

Mandrycky Christian, Wang Zongjie, Kim Keekyoung, Kim Deok-Ho

机构信息

Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.

School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada.

出版信息

Biotechnol Adv. 2016 Jul-Aug;34(4):422-434. doi: 10.1016/j.biotechadv.2015.12.011. Epub 2015 Dec 23.

Abstract

Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.

摘要

生物打印是一种3D制造技术,用于精确地分配载有细胞的生物材料,以构建复杂的3D功能性活组织或人造器官。虽然仍处于早期阶段,但生物打印策略已在再生医学中显示出其潜在用途,可生成包括皮肤、软骨和骨骼在内的多种可移植组织。然而,当前的生物打印方法在高分辨率细胞沉积、可控的细胞分布、血管化以及复杂3D组织内的神经支配方面仍存在技术挑战。虽然尚未出现一种适用于所有情况的生物打印方法,但它仍然是一种按需定制、多功能的制造技术,可能解决日益严重的器官短缺问题,并为微米级别的细胞图案化提供一种高通量方法,用于广泛的生物医学工程应用。在本综述中,我们介绍了生物打印的基本原理、材料、整合策略和应用,并讨论了用于构建复杂组织的3D生物打印的最新进展、当前挑战和未来前景。结合人类多能干细胞技术的最新进展,3D生物打印的组织模型可作为高通量预测性药物筛选和更有效再生疗法的一个支撑平台。

相似文献

1
3D bioprinting for engineering complex tissues.
Biotechnol Adv. 2016 Jul-Aug;34(4):422-434. doi: 10.1016/j.biotechadv.2015.12.011. Epub 2015 Dec 23.
2
Progress in 3D bioprinting technology for tissue/organ regenerative engineering.
Biomaterials. 2020 Jan;226:119536. doi: 10.1016/j.biomaterials.2019.119536. Epub 2019 Oct 11.
3
Current Progress in 3D Bioprinting of Tissue Analogs.
SLAS Technol. 2019 Feb;24(1):70-78. doi: 10.1177/2472630318799971. Epub 2018 Sep 26.
4
3D bioprinting of tissues and organs for regenerative medicine.
Adv Drug Deliv Rev. 2018 Jul;132:296-332. doi: 10.1016/j.addr.2018.07.004. Epub 2018 Jul 7.
5
3D bioprinting and the current applications in tissue engineering.
Biotechnol J. 2017 Aug;12(8). doi: 10.1002/biot.201600734. Epub 2017 Jul 4.
6
Advancing bioinks for 3D bioprinting using reactive fillers: A review.
Acta Biomater. 2020 Sep 1;113:1-22. doi: 10.1016/j.actbio.2020.06.040. Epub 2020 Jul 2.
7
3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors.
Int J Mol Sci. 2021 Apr 12;22(8):3971. doi: 10.3390/ijms22083971.
8
Triblock Copolymer Bioinks in Hydrogel Three-Dimensional Printing for Regenerative Medicine: A Focus on Pluronic F127.
Tissue Eng Part B Rev. 2022 Apr;28(2):451-463. doi: 10.1089/ten.TEB.2021.0026. Epub 2021 Jun 14.
9
3D Bioprinting for Next-Generation Personalized Medicine.
Int J Mol Sci. 2023 Mar 28;24(7):6357. doi: 10.3390/ijms24076357.
10
Construction of 3D in vitro models by bioprinting human pluripotent stem cells: Challenges and opportunities.
Brain Res. 2019 Nov 15;1723:146393. doi: 10.1016/j.brainres.2019.146393. Epub 2019 Aug 16.

引用本文的文献

1
3D bioprinting for stickler syndrome: a transformative approach to early-onset joint degeneration.
Ann Med Surg (Lond). 2025 Aug 11;87(9):6240-6241. doi: 10.1097/MS9.0000000000003708. eCollection 2025 Sep.
2
New Frontiers in 3D Printing Using Biocompatible Polymers.
Int J Mol Sci. 2025 Aug 19;26(16):8016. doi: 10.3390/ijms26168016.
5
Three-Dimensional Disassemblable Scaffolds for Breast Reconstruction.
Polymers (Basel). 2025 Jul 25;17(15):2036. doi: 10.3390/polym17152036.
6
Reconstructing the female reproductive system using 3D bioprinting in tissue engineering.
Mater Today Bio. 2025 Jul 22;34:102127. doi: 10.1016/j.mtbio.2025.102127. eCollection 2025 Oct.
7
Three-dimensional printing in modern orthopedic trauma surgery: a comprehensive analysis of technical evolution and clinical translation.
Front Med (Lausanne). 2025 Jul 15;12:1560909. doi: 10.3389/fmed.2025.1560909. eCollection 2025.
8
models of muscle spindles: From traditional methods to 3D bioprinting strategies.
J Tissue Eng. 2025 Jul 23;16:20417314251343388. doi: 10.1177/20417314251343388. eCollection 2025 Jan-Dec.

本文引用的文献

1
Porous bioprinted constructs in BMP-2 non-viral gene therapy for bone tissue engineering.
J Mater Chem B. 2013 Dec 28;1(48):6619-6626. doi: 10.1039/c3tb21093f. Epub 2013 Nov 8.
3
Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels.
Sci Adv. 2015 Oct 23;1(9):e1500758. doi: 10.1126/sciadv.1500758. eCollection 2015 Oct.
4
Active mixing of complex fluids at the microscale.
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12293-8. doi: 10.1073/pnas.1509224112. Epub 2015 Sep 22.
5
Multiscale Biofabrication of Articular Cartilage: Bioinspired and Biomimetic Approaches.
Tissue Eng Part B Rev. 2015 Dec;21(6):543-59. doi: 10.1089/ten.TEB.2015.0142. Epub 2015 Oct 20.
7
From CT scanning to 3-D printing technology for the preoperative planning in laparoscopic splenectomy.
Surg Endosc. 2016 Jan;30(1):366-71. doi: 10.1007/s00464-015-4185-y. Epub 2015 Jul 3.
8
Customised 3D Printing: An Innovative Training Tool for the Next Generation of Orbital Surgeons.
Orbit. 2015;34(4):216-9. doi: 10.3109/01676830.2015.1049367. Epub 2015 Jun 29.
9
Use of 3D printers to create a patient-specific 3D bolus for external beam therapy.
J Appl Clin Med Phys. 2015 May 8;16(3):5247. doi: 10.1120/jacmp.v16i3.5247.
10
A 3D bioprinted complex structure for engineering the muscle-tendon unit.
Biofabrication. 2015 Jun 17;7(3):035003. doi: 10.1088/1758-5090/7/3/035003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验